Energy-aware task scheduling in data centers using an application signature
dc.contributor.author | Salinas Hilburg, Juan Carlos | |
dc.contributor.author | Zapater, Marina | |
dc.contributor.author | Moya, José M. | |
dc.contributor.author | Ayala Rodrigo, José Luis | |
dc.date.accessioned | 2023-06-16T14:19:51Z | |
dc.date.available | 2023-06-16T14:19:51Z | |
dc.date.issued | 2021-12-08 | |
dc.description | CRUE-CSIC (Acuerdos Transformativos 2021) | |
dc.description.abstract | Data centers are power hungry facilities. Energy-aware task scheduling approaches are of utmost importance to improve energy savings in data centers, although they need to know beforehand the energy consumption of the applications that will run in the servers. This is usually done through a full profiling of the applications, which is not feasible in long-running application scenarios due to the long execution times. In the present work we use an application signature that allows to estimate the energy without the need to execute the application completely. We use different scheduling approaches together with the information of the application signature to improve the makespan of the scheduling process and therefore improve the energy savings in data centers. We evaluate the accuracy of using the application signature by means of comparing against an oracle method obtaining an error below 1.5%, and Compression Ratios around 39.7 to 45.8. | |
dc.description.department | Depto. de Arquitectura de Computadores y Automática | |
dc.description.faculty | Fac. de Informática | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Universidad Complutense de Madrid/Banco de Santander | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/70439 | |
dc.identifier.doi | 10.1016/j.compeleceng.2021.107630 | |
dc.identifier.issn | 0045-7906 | |
dc.identifier.officialurl | https://doi.org/10.1016/j.compeleceng.2021.107630 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/4707 | |
dc.journal.title | Computers & Electrical Engineering | |
dc.language.iso | eng | |
dc.page.initial | 107630 | |
dc.publisher | Elsevier | |
dc.relation.projectID | PID2019-110866RB-I00 | |
dc.relation.projectID | CT45/15-CT46/15 | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
dc.subject.keyword | Energy efficiency | |
dc.subject.keyword | Data centers | |
dc.subject.keyword | Application signature | |
dc.subject.keyword | Task scheduling | |
dc.subject.ucm | Bases de datos (Informática) | |
dc.title | Energy-aware task scheduling in data centers using an application signature | |
dc.type | journal article | |
dc.volume.number | 97 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c895e891-f47c-4a6b-bba0-6c07d7f0f504 | |
relation.isAuthorOfPublication | d73a810d-34c3-440e-8b5f-e2a7b0eb538f | |
relation.isAuthorOfPublication.latestForDiscovery | c895e891-f47c-4a6b-bba0-6c07d7f0f504 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0045790621005589-main.pdf
- Size:
- 1.3 MB
- Format:
- Adobe Portable Document Format