Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

OpenCL Portability Study of an Algorithm for Automatically Detecting Targets for Hyperspectral Image Analysis

dc.contributor.authorGarcı́a, Carlos
dc.contributor.authorPlaza, Antonio
dc.contributor.authorBernabé García, Sergio
dc.contributor.authorIgual Peña, Francisco Daniel
dc.contributor.authorBotella Juan, Guillermo
dc.contributor.authorPrieto Matías, Manuel
dc.date.accessioned2025-01-10T16:23:03Z
dc.date.available2025-01-10T16:23:03Z
dc.date.issued2019-08-19
dc.description.abstractIn the last decades, the issue of target detection has received considerable attention on remote sensing applications, where the use of high performance computing (HPC) has been linked. One of the most popular algorithm in target detection and identification is the automatic target detection and classification algorithm (ATDCA) widely used in the hyperspectral image analysis community. Previous research has already investigated the mapping of ATDCA on multicore processors, graphics processing units (GPUs) and accelerators like as field programmable gate arrays (FPGAs), showing impressive speedup factors that allow its exploitation in time-critical scenarios. Based on these studies, this paper explores a portability study of a tuned OpenCL implementation based on performance, energy consumption and code quality parameters compared to hand-tuned versions previously investigated. This approach differs from previous papers, which focused on achieving the optimal performance on each platform. Our study includes the analysis of different tuning techniques that expose data parallelism as well as enable an efficient exploitation of the complex memory hierarchies found in these new heterogeneous devices, as well as measuring the energy consumption on each platform and metrics to analyze the quality of our code. Experiments results demonstrate the importance of performance, energy consumption and code quality parameters applied on synthetic and real hyperspectral data sets collected by the Hyperspectral Digital Imagery Collection Experiment (HYDICE) and NASA’s Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensors, in order to really calibrate the possibility of using heterogeneous platforms for efficient hyperspectral imaging real-time processing in remote sensing missions.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.officialurlhttps://doi.org/10.1109/TGRS.2019.2927077
dc.identifier.urihttps://hdl.handle.net/20.500.14352/113789
dc.journal.titleIEEE Transactions on Geoscience and Remote Sensing
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ucmInformática (Informática)
dc.subject.unesco3307 Tecnología Electrónica
dc.titleOpenCL Portability Study of an Algorithm for Automatically Detecting Targets for Hyperspectral Image Analysis
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication092818da-fd6a-4d1f-ba39-7e6098841e99
relation.isAuthorOfPublicatione1ed9960-37d5-4817-8e5c-4e0e392b4d66
relation.isAuthorOfPublicationf94b32c6-dff7-4d98-9c7a-00aad48c2b6a
relation.isAuthorOfPublication5d3f6717-1495-4217-853c-8c9c75d56620
relation.isAuthorOfPublication.latestForDiscovery092818da-fd6a-4d1f-ba39-7e6098841e99

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ATDCA_JOURNAL.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format

Collections