Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On diffeomorphisms deleting weak compacta in Banach spaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

2004

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Polish Acad Sciences Inst Mathematics
Citations
Google Scholar

Citation

Abstract

The paper deals with the question, what can be said about smooth negligibility of compacta in those Banach spaces with smooth partitions of unity? It is inspired by the following theorem of Victor Klee and related results: If X is a non-reflexive Banach space or an infinite-dimensional Lp-space and K is a compact subset of X there exists a homeomorphism between X and X rK which is the identity outside a given neighborhood of K. The main result of the current article now is concerned with an infinite-dimensional Banach space X which has Cp-smooth partitions of unity for some p 2 N[{1}. Then, for every starlike body A with dist(K,X rA) > 0, there exists a Cp-diffeomorphism h:X !X rK such that h is the identity outside A.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections