Abstract results on the finite extinction time property: application to a singular parabolic equation
| dc.contributor.author | Díaz Díaz, Jesús Ildefonso | |
| dc.contributor.author | Belaud, Yves | |
| dc.date.accessioned | 2023-06-20T00:11:11Z | |
| dc.date.available | 2023-06-20T00:11:11Z | |
| dc.date.issued | 2010-04-03 | |
| dc.description.abstract | We start by studying the finite extinction time for solutions of the abstract Cauchy problem u(t) + Au + Bu = 0 where A is a maximal monotone operator and B is a positive operator on a Hilbert space H. We use a suitable spectral energy method to get some sufficient conditions which guarantee this property. As application we consider a singular semilinear parabolic equation: Au = -Delta u, Bu = a(x)u(q), a(x) >= 0 bounded and -1 < q < 1, on a regular bounded domain Omega and Dirichlet boundary conditions. | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Unión Europea. FP7 | |
| dc.description.sponsorship | Ministerio de Ciencia e Innovacion, Spain | |
| dc.description.sponsorship | UCM | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/15065 | |
| dc.identifier.issn | 0944-6532 | |
| dc.identifier.officialurl | http://www.heldermann.de/JCA/JCA17/JCA173/jca17054.htm | |
| dc.identifier.relatedurl | http://www.heldermann.de/ | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/42152 | |
| dc.issue.number | 3-4 | |
| dc.journal.title | Journal of convex analysis | |
| dc.language.iso | eng | |
| dc.page.final | 860 | |
| dc.page.initial | 827 | |
| dc.publisher | Heldermann Verlag | |
| dc.relation.projectID | FIRST (238702) | |
| dc.relation.projectID | MTM2008-06208] | |
| dc.relation.projectID | 910480 | |
| dc.rights.accessRights | restricted access | |
| dc.subject.cdu | 517.954 | |
| dc.subject.keyword | Finite extinction time | |
| dc.subject.keyword | abstract Cauchy problems | |
| dc.subject.keyword | singular semilinear parabolic equations | |
| dc.subject.keyword | semi-classical analysis. free-boundary solutions | |
| dc.subject.keyword | arbitrary order | |
| dc.subject.keyword | quasilinear equations | |
| dc.subject.keyword | vanishing properties | |
| dc.subject.keyword | elliptic problems | |
| dc.subject.keyword | energy solutions | |
| dc.subject.keyword | dimension | |
| dc.subject.keyword | evolution | |
| dc.subject.keyword | supports | |
| dc.subject.ucm | Física matemática | |
| dc.subject.ucm | Ecuaciones diferenciales | |
| dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
| dc.title | Abstract results on the finite extinction time property: application to a singular parabolic equation | |
| dc.type | journal article | |
| dc.volume.number | 17 | |
| dcterms.references | N. Alikakos, R. Rostamian: Lower bound estimates and separable solutions for homogeneous equations of evolution in Banach space, J. Differ. Equations 43 (1982) 323–344. S. N. Antontsev, J. I. Díaz, S. Shmarev: Energy Methods for Free Boundary Problems, Birkhäuser, Basel (2001). H. Attouch: Équations dévolution multivoques en dimension infinie, C. R. Acad. Sci., Paris, Sér. A 274 (1972) 1289–1291 H. Attouch: On the maximality of the sum of two maximal monotone operators, Nonlinear Anal. 5(2) (1981) 143–147. H. Attouch, H. Brezis: Duality for the sum of convex functions in general Banach spaces, in: Aspects of Mathematics and its Applications, J. A. Barroso (ed.), North-Holland, Amsterdam (1986) 125–133. H. Attouch, A. Damlamian: Application des méthodes de convexité et monotonie à l'étude de certaines équations quasi linéaires, Proc. R. Soc. Edinb., Sect. A 79 (1977) 107–129. A. Bamberger: Etude d'une équation doublement non linéaire, J. Funct. Anal. 24 (1977) 148–155. Y. Belaud: Time-vanishing properties of solutions of some degenerate parabolic equations with strong absorption, Adv. Nonlinear Stud. 1(2) (2001) 117–152. Y. Belaud: Asymptotic estimates for a variational problem involving a quasilinear operator in the semi-classical limit, Ann. Global Anal. Geom. 26 (2004) 271–313. Y. Belaud, J. I. Díaz: On the finite extinction time of solutions of abstract Cauchy problems in Banach spaces, to appear. Y. Belaud, B. Helffer, L. Véron: Long-time vanishing properties of solutions of some semilinear parabolic equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18(1) (2001) 43–68. Y. Belaud, A. E. Shishkov: Long-time extinction of solutions of some sermilinear parabolic equations, J. Differ. Equations 238 (2007) 64–86. F. Bernis: Compactness of the support for some nonlinear elliptic problems of arbitrary order in dimension N, Commun. Partial Differ. Equations 9(3) (1984) 271–312. J. G. Berryman, J. G. Holland: Nonlinear diffusion problems arising in plasma physics, Phys. Rev. Lett. 40 (1978) 1720–1722. H. Brezis: Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in: Contributions to Nonlinear Functional Analysis (Madison, 1971), E. H. Zarantonello (ed.), Math. Res. Center, Univ. Wisconsin, Academic Press, New York (1971) 101–156. H. Brezis: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North Holland, Amsterdam (1973). H. Brezis: Monotone operators, nonlinear semigroups and applications, in: Proc. Int. Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2, Canad. Math. Congress, Montréal (1975) 249–255 H. Brezis: Analyse Fonctionnelle. Théorie et Applications, Masson, Paris (1986). J. Dávila, M. Montenegro: Positive versus free boundary solutions to a singular equation, J. Anal. Math. 90 (2003) 303–335. G. Díaz, J. I. Díaz: Finite extinction time for a class of non linear parabolic equations, Commun. Partial Differ. Equations 4(11) (1979) 1213–1231. J. I. Díaz: Nonlinear Partial Differential Equations and Free Boundaries, Pitman, London (1985). J. I. Díaz: Special finite time extinction in nonlinear evolution systems: dynamic boundary conditions and Coulomb friction type problems, in: Nonlinear Elliptic and Parabolic Problems (Zürich, 2004), M. Chipot, J. Escher (eds.), Birkhäuser, Basel (2005) 71–97. J. I. Díaz: On the Haïm Brezis pioneering contributions on the location of free boundaries, in: Elliptic and Parabolic Problems (Gaeta, 2004), M. Chipot et al. (ed.), Birkhäuser, Basel (2005) 217–234. J. I. Díaz, J. Hernandez: Global bifurcation and continua of nonnegative solutions for a quasilinear elliptic problem, C. R. Acad. Sci., Paris, Sér. I, Math. 329 (1999) 587–592. J. I. Díaz, J. Hernández, F. J. Mancebo: Branches of positive and free boundary solutions for some singular quasilinear elliptic problems, J. Math. Anal. Appl. 352 (2009) 449–474. J. I. Díaz, V. Millot: Coulomb friction and oscillation: stabilization in finite time for a system of damped oscillators, CD-Rom Actas XVIII CEDYA / VIII CMA, Servicio de Publicaciones de la Univ. de Tarragona (2003). J. I. Díaz, L. Véron: Local vanishing properties of solutions of elliptic and parabolic quasilinear equations, Trans. Amer. Math. Soc 290(2) (1985) 787–814. D. Gilbarg, N. Trudinger: Elliptic Partial Differential Equations of Second Order, Springer, Berlin (1977). B. Helffer: Semi-Classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Math. 1336, Springer, Berlin (1989). M. Herrero, J. L. Vázquez: Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem, Ann. Fac. Sci. Toulouse, V. Ser, Math. 3 (1981) 113–127. V. A. Kondratiev, L. Véron: Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations, Asymptotic Anal. 14 (1997) 117–156. J. Mossino: Inégalités Isopérimétriques et Applications en Physique, Travaux en Cours, Hermann, Paris (1984). D. Phillips: Existence of solutions of quenching problems, Appl. Anal. 24 (1987) 253–264. A. E. Shishkov, A. G. Shchelkov: Dynamics of the support of energy solutions of mixed problems for quasi-linear parabolic equations fo arbitrary order, Izv. Math. 62(3) (1998) 601–626. A. E. Shishkov: Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order, Sb. Math. 190(12) (1999) 1843–1869. L. Véron: Coercivité et propriétés régularisantes des semi-groupes non linéaires dans les espaces de Banach, Publication de l'Université François Rabelais - Tours (1976). L. Véron: Effets régularisants de semi-groupes non linéaires dans des espaces de Banach, Ann. Fac. Sci. Toulouse, V. Ser, Math. 1 (1979) 171–200. L. Véron: Singularities of Solutions of Second Order Quasilinear Equations, Longman, Harlow (1996). | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 | |
| relation.isAuthorOfPublication.latestForDiscovery | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 |
Download
Original bundle
1 - 1 of 1

