Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The role of pyrimidine and water as underlying molecular constituents for describing radiation damage in living tissue: a comparative study

dc.contributor.authorFuss, M. C.
dc.contributor.authorEllis-Gibbings, L.
dc.contributor.authorJones, D. B.
dc.contributor.authorBrunger, M. J.
dc.contributor.authorBlanco Ramos, Francisco
dc.contributor.authorMuñoz, A.
dc.contributor.authorLimao Vieira, P.
dc.contributor.authorGarcía, G.
dc.date.accessioned2023-06-18T06:46:35Z
dc.date.available2023-06-18T06:46:35Z
dc.date.issued2015-06-07
dc.description© 2015 American Institute of Physics. This research was supported by the Australian Research Council (ARC) through its Centres of Excellence Program. D.B.J. thanks the ARC for provision of a Discovery Early Career Researcher Award. We also acknowledge the support of the Spanish Ministerio de Economia y Competitivad under Project No. FIS 2012-31230 and the European Union COST Actions (MP1002 and CM1301). P.L.V. acknowledges the Portuguese Foundation for Science and Technology (FCT-MEC) through research grants PTDC/FIS-ATO/1832/2012, UID/FIS/00068/2013, and SFRH/BSAB/105792/2014. P.L.V. also acknowledges his Visiting Professor position at Flinders University, Adelaide, South Australia.
dc.description.abstractWater is often used as the medium for characterizing the effects of radiation on living tissue. However, in this study, charged-particle track simulations are employed to quantify the induced physicochemical and potential biological implications when a primary ionising particle with energy 10 keV strikes a medium made up entirely of water or pyrimidine. Note that pyrimidine was chosen as the DNA/RNA bases cytosine, thymine, and uracil can be considered pyrimidine derivatives. This study aims to assess the influence of the choice of medium on the charged-particle transport, and identify how appropriate it is to use water as the default medium to describe the effects of ionising radiation on living tissue. Based on the respective electron interaction cross sections, we provide a model, which allows the study of radiation effects not only in terms of energy deposition (absorbed dose and stopping power) but also in terms of the number of induced molecular processes. Results of these parameters for water and pyrimidine are presented and compared. (C) 2015 AIP Publishing LLC.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitivad (MINECO)
dc.description.sponsorshipAustralian Research Council (ARC) through its Centres of Excellence Program
dc.description.sponsorshipARC
dc.description.sponsorshipEuropean Union COST Actions
dc.description.sponsorshipPortuguese Foundation for Science and Technology (FCT-MEC)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33006
dc.identifier.doi10.1063/1.4921810
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4921810
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24139
dc.issue.number21
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDFIS 2012-31230
dc.relation.projectIDMP1002
dc.relation.projectIDCM1301
dc.relation.projectIDPTDC/FIS-ATO/1832/2012
dc.relation.projectIDUID/FIS/00068/2013
dc.relation.projectIDSFRH/BSAB/105792/2014
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordLow-energy-electron
dc.subject.keywordMonte-carlo-simulation
dc.subject.keywordPositron transport
dc.subject.keywordSpectroscopy
dc.subject.keywordTracks
dc.subject.keywordScattering
dc.subject.keywordRange
dc.subject.keywordBenzene
dc.subject.keywordSystems
dc.subject.keywordLiquid
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleThe role of pyrimidine and water as underlying molecular constituents for describing radiation damage in living tissue: a comparative study
dc.typejournal article
dc.volume.number117
dcterms.references1 B. Boudaiffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, Science 287, 1658 (2000). 2 C. von Sonntag, Free-Radical-Induced DNA Damage and its Repair (Springer, New York, 2005). 3 L. Sanche, in Radiation Induced Molecular Phenomena in Nucleic Acids, edited by M. Shukla and J. Leszczynski (Springer, Netherlands, 2008), Vol. 5, pp. 531–575. 4 S. M. Pimblott and J. A. LaVerne, Radiat. Phys. Chem. 76, 1244 (2007). 5 V. Cobut, Y. Frongillo, J. P. Patau, T. Goulet, M.-J. Fraser, and J.-P. Jay- Gerin, Radiat. Phys. Chem. 51, 229 (1998). 6 J. A. LaVerne and S. Pimblott, Radiat. Res. 141, 208 (1995). 7 L. Turi and P. J. Rossky, Chem. Rev. 112, 5641–5674 (2012). 8 L. Sanche, Nature 461, 358–359 (2009). 9 S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. G omez Cadenas, I. Gonz alez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lamp en, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F.Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber,J. P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003). 10 J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. A. P. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P. M. Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M. G. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tome, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J. P. Wellisch, D. C. Williams, D. Wright, and H. Yoshida, IEEE Trans. Nucl. Sci. 53, 270–278 (2006). 11 F. Salvat, J. M. Fernandez-Varea, and J. Sempau, in PENELOPE2011: A Code System for Monte-Carlo Simulation of Electron and Photon Transport, OECD—Nuclear Energy Agency, 2011. 12 C. Champion, C. Le Loirec, and B. Stosic, Int. J. Radiat. Biol. 88, 54–61 (2012). 13 A. Muñoz, F. Blanco, J. C. Oller, J. M. Pérez, and G. García, in Advances in Quantum Chemistry, edited by J. R. Sabin and E. Brändas (Academic Press, 2007), Vol. 52, pp. 21–57. 14 A. Muñoz, M. Fuss, M. A. Cortés-Giraldo, S. Incerti, V. Ivanchenko, A. Ivanchenko, J. M. Quesada, F. Salvat, C. Champion, and G. Gómez-Tejedor, in Radiation Damage in Biomolecular Systems, edited by G. García Gómez-Tejedor and M. C. Fuss (Springer, Netherlands, 2012), pp. 203–225. 15 R. D. White, W. Tattersall, G. Boyle, R. E. Robson, S. Dujko, Z. L. Petrovic, A. Bankovic, M. J. Brunger, J. P. Sullivan, S. J. Buckman, and G. Garcia, Appl. Radiat. Isot. 83(Pt. B), 77–85 (2014). 16 J. de Urquijo, E. Basurto, A. M. Juarez, K. F. Ness, R. E. Robson, M. J. Brunger, and R. D. White, J. Chem. Phys. 141, 014308 (2014). 17 R. D. White, M. J. Brunger, N. A. Garland, R. E. Robson, K. F. Ness, G. Garcia, J. de Urquijo, S. Dujko, and Z. L. Petrović, Eur. Phys. J. D 68, 1–6 (2014). 18 S. Incerti, G. Baldacchino, M. Bernal, R. Capra, C. Champion, Z. Francis, P. Guèye, A. Mantero, B. Mascialino, P. Moretto, P. Nieminen, C. Villagrasa, and C. Zacharatou, Int. J. Model. Simul. Sci. Comput. 1, 157–178 (2010). 19 J. Builth-Williams, S. M. Bellm, D. B. Jones, H. Chaluvadi, D. Madison, C. G. Ning, B. Lohmann, and M. J. Brunger, J. Chem. Phys. 136, 024304 (2012). 20 D. B. Jones, S. M. Bellm, F. Blanco, M. Fuss, G. Garcia, P. Limão-Vieira, and M. J. Brunger, J. Chem. Phys. 137, 074304 (2012). 21 D. B. Jones, S. M. Bellm, P. Lim~ao-Vieira, and M. J. Brunger, Chem. Phys. Lett. 535, 30–34 (2012). 22 Z. Masin, J. D. Gorfinkiel, D. B. Jones, S. M. Bellm, and M. J. Brunger, J. Chem. Phys. 136, 144310 (2012). 23 M. Stener, P. Decleva, D. M. P. Holland, and D. A. Shaw, J. Phys. B: At. Mol. Phys. 44, 075203 (2011). 24 F. Ferreira da Silva, D. Almeida, G. Martins, A. R. Milosavljevic, B. P. Marinkovic, S. V. Hoffmann, N. J. Mason, Y. Nunes, G. Garcia, and P.Limao-Vieira, Phys. Chem. Chem. Phys. 12, 6717–6731 (2010). 25 P. Palihawadana, J. Sullivan, M. Brunger, C. Winstead, V. McKoy, G. García, F. Blanco, and S. Buckman, Phys. Rev. A 84, 062702 (2011). 26 M. C. Fuss, A. G. Sanz, F. Blanco, J. C. Oller, P. Limão-Vieira, M. J. Brunger, and G. García, Phys. Rev. A 88, 042702 (2013). 27 A. Zecca, L. Chiari, G. Garcia, F. Blanco, E. Trainotti, and M. J. Brunger, J. Phys. B: At. Mol. Phys. 43, 215204 (2010). 28 J. B. Maljkovic, A. R. Milosavljevic, F. Blanco, D. Sevic, G. Garcia, and B. P. Marinkovic, Phys. Rev. A 79, 052706 (2009). 29 C. G. Ning, K. Liu, Z. H. Luo, S. F. Zhang, and J. K. Deng, Chem. Phys. Lett. 476, 157–162 (2009). 30 S. H. R. Shojaei, B. Hajgat o, and M. S. Deleuze, Chem. Phys. Lett. 498, 45–51 (2010). 31 P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005). 32 M. H. Palmer, I. C. Walker, M. F. Guest, and A. Hopkirk, Chem. Phys. 147, 19–33 (1990). 33 I. Nenner and G. J. Schulz, J. Chem. Phys. 62, 1747–1758 (1975). 34 D. Almeida, D. Kinzel, F. Ferreira da Silva, B. Puschnigg, D. Gschliesser, P. Scheier, S. Denifl, G. García, L. González, and P. Limão-Vieira, Phys. Chem. Chem. Phys. 15, 11431–11440 (2013). 35 D. Almeida, F. Ferreira da Silva, G. Garc ıa, and P. Limão-Vieira, Phys. Rev. Lett. 110, 023201 (2013). 36 F. Blanco, A. Muñoz, D. Almeida, F. Ferreira da Silva, P. Limão-Vieira, M. C. Fuss, A. G. Sanz, and G. Garc ıa, Eur. Phys. J. D 67, 199 (2013). 37 A. G. Sanz, M. C. Fuss, A. Muñoz, F. Blanco, P. Limão-Vieira, M. J. Brunger, S. J. Buckman, and G. García, Int. J. Radiat. Biol. 88, 71–76 (2012). 38 A. Muñoz, J. M. Pérez, G. García, and F. Blanco, Nucl. Instrum. Methods Phys. Res., Sect. A 536, 176–188 (2005). 39 A. G. Sanz, M. C. Fuss, F. Blanco, Z. Masín, J. D. Gorfinkiel, F. Carelli, F. Sebastianelli, F. A. Gianturco, and G. García, Appl. Radiat. Isot. 83(Pt. B), 57–67 (2014). 40 I. Linert, M. Dampc, B. Mielewska, and M. Zubek, Eur. Phys. J. D 66, 1–9 (2012). 41 W. Y. Baek, A. Arndt, M. U. Bug, H. Rabus, and M. Wang, Phys. Rev. A 88, 032702 (2013). 42 J. R. Ferraz, A. S. dos Santos, G. L. C. de Souza, A. I. Zanelato, T. R. M. Alves, M. T. Lee, L. M. Brescansin, R. R. Lucchese, and L. E. Machado, Phys. Rev. A 87, 032717 (2013). 43 W. Wolff, H. Luna, L. Sigaud, A. C. Tavares, and E. C. Montenegro, J. Chem. Phys. 140, 064309 (2014). 44 A. Muñoz, F. Blanco, G. García, P. A. Thorn, M. J. Brunger, J. P. Sullivan, and S. J. Buckman, Int. J. Mass Spectrom. 277, 175–179 (2008). 45 CRC Handbook of Chemistry and Physics, edited by D. R. Lide (CRC Press, Boca Raton, FL, 2005), Internet Version 2005, http://www.hbcpnetbase.com. 46 R. Colmenares, A. G. Sanz, M. C. Fuss, F. Blanco, and G. Garc ıa, Appl. Radiat. Isot. 83(Pt. B), 91–94 (2014). 47 T. Field, private communication (2008). 48 M. C. Fuss, A. G. Sanz, F. Blanco, P. Limão-Vieira, M. J. Brunger, and G. García, Eur. Phys. J. D 68, 161 (2014). 49 R. Mota, R. Parafita, A. Giuliani, M.-J. Hubin-Franskin, J. M. C. Lourenco, G. Garcia, S. V. Hoffmann, N. J. Mason, P. A. Ribeiro, M. Raposo, and P. Limão-Vieira, Chem. Phys. Lett. 416, 152–159 (2005).
dspace.entity.typePublication
relation.isAuthorOfPublicationfd97b031-5b10-40ab-beb5-8f192e632ca3
relation.isAuthorOfPublication.latestForDiscoveryfd97b031-5b10-40ab-beb5-8f192e632ca3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Blanco Ramos F 03 LIBRE.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format

Collections