Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Applications of data science to game learning analytics data: A systematic literature review

dc.contributor.authorAlonso Fernández, Cristina
dc.contributor.authorCalvo Morata, Antonio
dc.contributor.authorFreire Morán, Manuel
dc.contributor.authorMartínez Ortiz, Iván
dc.contributor.authorFernández Manjón, Baltasar
dc.date.accessioned2024-02-06T14:24:45Z
dc.date.available2024-02-06T14:24:45Z
dc.date.issued2019-11
dc.description.abstractData science techniques, nowadays widespread across all fields, can also be applied to the wealth of information derived from student interactions with serious games. Use of data science techniques can greatly improve the evaluation of games, and allow both teachers and institutions to make evidence-based decisions. This can increase both teacher and institutional confidence regarding the use of serious games in formal education, greatly raising their attractiveness. This paper presents a systematic literature review on how authors have applied data science techniques on game analytics data and learning analytics data from serious games to determine: (1) the purposes for which data science has been applied to game learning analytics data, (2) which algorithms or analysis techniques are commonly used, (3) which stakeholders have been chosen to benefit from this information and (4) which results and conclusions have been drawn from these applications. Based on the categories established after the mapping and the findings of the review, we discuss the limitations of the studies analyzed and propose recommendations for future research in this field.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1016/j.compedu.2019.103612
dc.identifier.issn0360-1315
dc.identifier.urihttps://hdl.handle.net/20.500.14352/99560
dc.journal.titleComputers & Education
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordData science applications in education
dc.subject.keywordEvaluation methodologies
dc.subject.keywordGames
dc.subject.keywordTeaching/learning strategies
dc.subject.ucmSoftware
dc.subject.ucmEducación
dc.subject.unesco1203.10 Enseñanza Con Ayuda de Ordenador
dc.titleApplications of data science to game learning analytics data: A systematic literature review
dc.typejournal article
dc.volume.number141
dspace.entity.typePublication
relation.isAuthorOfPublication3e9733bf-a280-423e-9e16-0689893aa498
relation.isAuthorOfPublication8fe77cd0-8c60-4afc-9c42-b649fd114502
relation.isAuthorOfPublication31da3433-5b95-45a0-badf-a639e7f3e4b8
relation.isAuthorOfPublicationdea963b6-c09b-4f13-a535-76661dab0d5d
relation.isAuthorOfPublication7aa3aa1c-0f71-4c2f-8f82-275aa14354b1
relation.isAuthorOfPublication7aa3aa1c-0f71-4c2f-8f82-275aa14354b1
relation.isAuthorOfPublication.latestForDiscovery3e9733bf-a280-423e-9e16-0689893aa498

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
draft_10.1016_j.compedu.2019.103612.pdf
Size:
516.93 KB
Format:
Adobe Portable Document Format

Collections