Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Expert System to Model and Forecast Time Series of Epidemiological Counts with Applications to COVID-19

dc.contributor.authorGonzález Pérez, Beatriz
dc.contributor.authorNúñez Rey, Concepción
dc.contributor.authorSánchez, Jose Luis
dc.contributor.authorValverde Castilla, Gabriel Antonio
dc.contributor.authorVelasco, José Manuel
dc.date.accessioned2025-01-30T08:31:50Z
dc.date.available2025-01-30T08:31:50Z
dc.date.issued2021
dc.description.abstractWe developed two models for real-time monitoring and forecasting of the evolution of the COVID-19 pandemic: a non-linear regression model and an error correction model. Our strategy allows us to detect pandemic peaks and make short- and long-term forecasts of the number of infected, deaths and people requiring hospitalization and intensive care. The non-linear regression model is implemented in an expert system that automatically allows the user to fit and forecast through a graphical interface. This system is equipped with a control procedure to detect trend changes and define the end of one wave and the beginning of another. Moreover, it depends on only four parameters per series that are easy to interpret and monitor along time for each variable. This feature enables us to study the effect of interventions over time in order to advise how to proceed in future outbreaks. The error correction model developed works with cointegration between series and has a great forecast capacity. Our system is prepared to work in parallel in all the Autonomous Communities of Spain. Moreover, our models are compared with a SIR model extension (SCIR) and several models of artificial intelligence.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyFac. de Informática
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationGonzález-Pérez B, Núñez C, Sánchez JL, Valverde G, Velasco JM. Expert System to Model and Forecast Time Series of Epidemiological Counts with Applications to COVID-19. Mathematics. (2021); 9(13):1485.
dc.identifier.doi10.3390/MATH9131485
dc.identifier.officialurlhttps://doi.org/10.3390/math9131485
dc.identifier.relatedurlhttps://www.mdpi.com/2227-7390/9/13/1485
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117102
dc.issue.number13
dc.journal.titleMathematics
dc.language.isoeng
dc.page.initial1485
dc.publishermdpi
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordArtificial intelligence
dc.subject.keywordError correction model
dc.subject.keywordMachine learning
dc.subject.keywordNon-linear regression
dc.subject.keywordSIR
dc.subject.ucmInformática (Informática)
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco12 Matemáticas
dc.subject.unesco33 Ciencias Tecnológicas
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleExpert System to Model and Forecast Time Series of Epidemiological Counts with Applications to COVID-19
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number9
dspace.entity.typePublication
relation.isAuthorOfPublication10d9023b-cb9d-4ef7-bde2-9478081ca100
relation.isAuthorOfPublication2ecc56f2-0982-42b7-8c86-39f61d095da6
relation.isAuthorOfPublicationb1b3e0dd-c868-45e0-8711-91109ceb97e3
relation.isAuthorOfPublication.latestForDiscovery10d9023b-cb9d-4ef7-bde2-9478081ca100

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematics-09-01485-v2 (1).pdf
Size:
3.03 MB
Format:
Adobe Portable Document Format

Collections