Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Enhancements of pinning by superconducting nanoarrays

dc.contributor.authorNavarro Palma, Elena
dc.contributor.authorMonton, C.
dc.contributor.authorPereiro, J.
dc.contributor.authorBasaran, Ali C.
dc.contributor.authorSchuller, Ivan K.
dc.date.accessioned2023-06-18T06:49:00Z
dc.date.available2023-06-18T06:49:00Z
dc.date.issued2015-09-21
dc.description©American Physical Society. We thank J. Wampler for help with the fabrications of porous alumina masks. The sample preparation and characterization was supported by the U.S. AFOSR Grant No. FA9550- 14-1-202. Work was supported by Spanish MINECO under Grant No. FIS2013-45469 and CAM Grant No. S2013/MIT- 2850. E.N. acknowledges support from Ministerio de Educacion, Cultura y Deporte, Subprograma Estatal de Movilidad, ´ Salvador de Madariaga 2014.
dc.description.abstractWe present a comparative study of vortex pinning efficiency in superconducting (V) thin films grown on two similar triangular arrays of superconducting (Nb) and nonsuperconducting (Cu) nanodots. Resistance and magnetization anomalies at the same matching fields confirm the same pinning periodicity in both samples. However, we found two distinct features: First, the sample with superconducting dots shows stronger pinning that appears as sharper matching peaks in magnetization loops and shows higher critical current density and larger critical field at low temperatures. Second, an overall increase in the resistance of the V film with Nb nanodots is observed, while there is a crossover in the temperature dependence of the critical field and the critical current of both samples at T = 3 K. This crossover corresponds to the temperature when the superconducting coherence length of V thin film equals the edge-to- edge distance between nanodots. We argue that this change in superconducting properties is related to the change in the superconducting regime from pinning enhancement at low temperatures to a superconducting wire network at high temperatures.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipU.S. AFOSR
dc.description.sponsorshipMinisterio de Educacion, Cultura y Deporte, Subprograma Estatal de Movilidad, Salvador de Madariaga
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34992
dc.identifier.doi10.1103/PhysRevB.92.144512
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.92.144512
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24286
dc.issue.number14
dc.journal.titlePhysical review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFA9550-14-1-0202
dc.relation.projectIDFIS2013-45469
dc.relation.projectIDNANOFRONTMAG-CM (S2013/MIT-2850)
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordAntidot lattice
dc.subject.keywordMagnetic-field
dc.subject.keywordWire networks
dc.subject.keywordArrays
dc.subject.keywordFilms
dc.subject.keywordDots
dc.subject.keywordTransition
dc.subject.keywordSize
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleEnhancements of pinning by superconducting nanoarrays
dc.typejournal article
dc.volume.number92
dcterms.references[1] A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979). [2] A. Hoffmann, P. Prieto, and I. K. Schuller, Phys. Rev. B 61, 6958 (2000). [3] C. Reichhardt and C. J. Olson Reichhardt, Phys. Rev. B 76, 094512 (2007). [4] S. Guénon, Y. J. Rosen, Ali C. Basaran, and I. K. Schuller, Appl. Phys. Lett. 102, 252602 (2013); D. Ray, C. J. Olson Reichhardt, B. Jankó, and C. Reichhardt, Phys. Rev. Lett. 110, 267001 (2013). [5] A. T. Fiory, A. F. Hebard, and S. Somekh, Appl. Phys. Lett. 32, 73 (1978). [6] K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, and V. V. Moshchalkov, Science 274, 1167 (1996). [7] V. Metlushko, U. Welp, G. W. Crabtree, R. Osgood, S. D. Bader, L. E. DeLong, Z. Zhang, S. R. J. Brueck, B. Ilic, K. Chung, and P. J. Hesketh, Phys. Rev. B 60, R12585 (1999). [8] G. R. Berdiyorov, M. V. Miloševic, and F. M. Peeters, Phys. Rev. Lett. 96, 207001 (2006); Phys. Rev. B 74, 74512 (2006). [9] A. Bezryadin, Yu. N. Ovchinnikov, and B. Pannetier, Phys. Rev. B 53, 8553 (1996). [10] S. Raedts, A. V. Silhanek, M. J. Van Bael, and V. V. Moshchalkov, Phys. Rev. B 70, 024509 (2004). [11] J. I. Martín, M. Vélez, J. Nogués, and I. K. Schuller, Phys. Rev. Lett. 79, 1929 (1997). [12] M. Lange, M. J. Van Bael, Y. Bruynseraede, and V. V. Moshchalkov, Phys. Rev. Lett. 90, 197006 (2003); M. V. Miloševi ć and F. M. Peeters, Europhys. Lett. 70, 670 (2005). [13] Y. Jaccard, J. I. Martín, M.-C. Cyrille, M. Velez, J. L. Vicent, and I. K. Schuller, Phys. Rev. B 58, 8232 (1998). [14] M. J. Van Bael, K. Temst, V. V. Moshchalkov, and Y. Bruynseraede, Phys. Rev. B 59, 14674 (1999). [15] X. S. Ling, H. J. Lezec, M. J. Higgins, J. S. Tsai, J. Fujita, H. Numata, Y. Nakamura, Y. Ochiai, Chao Tang, P. M. Chaikin, and S. Bhattacharya, Phys. Rev. Lett. 76, 2989 (1996). [16] R. D. Parks and W. A. Little, Phys. Rev. 133, A97 (1964) [17] B. Pannetier, J. Chaussy, R. Rammal, and J. C. Villegier, Phys. Rev. Lett. 53, 1845 (1984). [18] G. R. Berdiyorov, V. R. Misko, M. V. Miloševic, W. Escoffier, I. V. Grigorieva, and F. M. Peeters, Phys. Rev. B 77, 024526 (2008). [19] J. I. Facio, A. Abate, J. Guimpel, and P. S. Cornaglia, J. Phys.: Condens. Matter 25, 245701 (2013). [20] S. J. Carreira, C. Chiliotte, V. Bekeris, Y. J. Rosen, C. Monton, and I. K. Schuller, Supercond. Sci. Technol. 27, 085007 (2014). [21] C.-P. Li, I. V. Roshchin, X. Batlle, M. Viret, F. Ott, and I. K. Schuller, J. Appl. Phys. 100, 074318 (2006). [22] J. E. Allen, K. G. Yager, H. Hlaing, C. Y. Nam, B. M. Ocko, and C. T. Black, Appl. Phys. Lett. 99, 163301 (2011). [23] I. Valmianski, C. Monton, and I. K. Schuller, Rev. Sci. Instrum. 85, 033701 (2014). [24] J. G. Ramírez, A. C. Basaran, J. de la Venta, J. Pereiro, and I. K. Schuller, Rep. Prog. Phys. 77, 093902 (2014). [25] M. I. Montero, J. J. Akerman, A. Varilci, and I. K. Schuller, Europhys. Lett. 63, 118 (2003). [26] S. Bose, P. Raychaudhuri, R. Banerjee, P. Vasa, and P. Ayyub, Phys. Rev. Lett. 95, 147003 (2005). [27] C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996). [28] I. A. Garifullin, N. N. Garif’yanov, R. I. Salikhov, and L. R. Tagirov, JETP Lett. 87, 316 (2008). [29] C. P. Bean, Phys. Rev. Lett. 8, 250 (1962); Rev. Mod. Phys. 36, 31 (1964). [30] U. Patel, Z. L. Xiao, J. Hua, T. Xu, D. Rosenmann, V. Novosad, J. Pearson, U. Welp, W. K. Kwok, and G. W. Crabtree, Phys. Rev. B 76, 020508(R) (2007). [31] V. V. Moshchalkov, M. Baert, V. V. Metlushko, E. Rosseel, M. J. Van Bael, K. Temst, Y. Bruynseraede, and R. Jonckheere, Phys. Rev. B 57, 3615 (1998). [32] U. Welp, Z. L. Xiao, J. S. Jiang, V. K. Vlasko-Vlasov, S. D. Bader, G. W. Crabtree, J. Liang, H. Chik, and J. M. Xu, Phys. Rev. B 66, 212507 (2002). [33] M. Tinkham, D. W. Abraham, and C. J. Lobb, Phys. Rev. B 28, 6578 (1983). [34] V. V. Metlushko, L. E. DeLong, V. V. Moshchalkov, and Y. Bruynseraede, Physica C 391, 196 (2003). [35] C. Reichhardt and C. J. Olson Reichhardt, Phys. Rev. B 79, 134501 (2009). [36] L. E. De Long, S. Kryukov, V. V. Metlushko, V. V. Moshchalkov,
dspace.entity.typePublication
relation.isAuthorOfPublicationceb875eb-f735-40b1-8e02-26e6a8f34a5e
relation.isAuthorOfPublication.latestForDiscoveryceb875eb-f735-40b1-8e02-26e6a8f34a5e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NPalmaE 08 LIBRE.pdf
Size:
996.99 KB
Format:
Adobe Portable Document Format

Collections