Enhancements of pinning by superconducting nanoarrays
dc.contributor.author | Navarro Palma, Elena | |
dc.contributor.author | Monton, C. | |
dc.contributor.author | Pereiro, J. | |
dc.contributor.author | Basaran, Ali C. | |
dc.contributor.author | Schuller, Ivan K. | |
dc.date.accessioned | 2023-06-18T06:49:00Z | |
dc.date.available | 2023-06-18T06:49:00Z | |
dc.date.issued | 2015-09-21 | |
dc.description | ©American Physical Society. We thank J. Wampler for help with the fabrications of porous alumina masks. The sample preparation and characterization was supported by the U.S. AFOSR Grant No. FA9550- 14-1-202. Work was supported by Spanish MINECO under Grant No. FIS2013-45469 and CAM Grant No. S2013/MIT- 2850. E.N. acknowledges support from Ministerio de Educacion, Cultura y Deporte, Subprograma Estatal de Movilidad, ´ Salvador de Madariaga 2014. | |
dc.description.abstract | We present a comparative study of vortex pinning efficiency in superconducting (V) thin films grown on two similar triangular arrays of superconducting (Nb) and nonsuperconducting (Cu) nanodots. Resistance and magnetization anomalies at the same matching fields confirm the same pinning periodicity in both samples. However, we found two distinct features: First, the sample with superconducting dots shows stronger pinning that appears as sharper matching peaks in magnetization loops and shows higher critical current density and larger critical field at low temperatures. Second, an overall increase in the resistance of the V film with Nb nanodots is observed, while there is a crossover in the temperature dependence of the critical field and the critical current of both samples at T = 3 K. This crossover corresponds to the temperature when the superconducting coherence length of V thin film equals the edge-to- edge distance between nanodots. We argue that this change in superconducting properties is related to the change in the superconducting regime from pinning enhancement at low temperatures to a superconducting wire network at high temperatures. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO) | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | U.S. AFOSR | |
dc.description.sponsorship | Ministerio de Educacion, Cultura y Deporte, Subprograma Estatal de Movilidad, Salvador de Madariaga | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/34992 | |
dc.identifier.doi | 10.1103/PhysRevB.92.144512 | |
dc.identifier.issn | 1098-0121 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevB.92.144512 | |
dc.identifier.relatedurl | http://journals.aps.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/24286 | |
dc.issue.number | 14 | |
dc.journal.title | Physical review B | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.projectID | FA9550-14-1-0202 | |
dc.relation.projectID | FIS2013-45469 | |
dc.relation.projectID | NANOFRONTMAG-CM (S2013/MIT-2850) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Antidot lattice | |
dc.subject.keyword | Magnetic-field | |
dc.subject.keyword | Wire networks | |
dc.subject.keyword | Arrays | |
dc.subject.keyword | Films | |
dc.subject.keyword | Dots | |
dc.subject.keyword | Transition | |
dc.subject.keyword | Size | |
dc.subject.ucm | Física de materiales | |
dc.subject.ucm | Física del estado sólido | |
dc.subject.unesco | 2211 Física del Estado Sólido | |
dc.title | Enhancements of pinning by superconducting nanoarrays | |
dc.type | journal article | |
dc.volume.number | 92 | |
dcterms.references | [1] A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979). [2] A. Hoffmann, P. Prieto, and I. K. Schuller, Phys. Rev. B 61, 6958 (2000). [3] C. Reichhardt and C. J. Olson Reichhardt, Phys. Rev. B 76, 094512 (2007). [4] S. Guénon, Y. J. Rosen, Ali C. Basaran, and I. K. Schuller, Appl. Phys. Lett. 102, 252602 (2013); D. Ray, C. J. Olson Reichhardt, B. Jankó, and C. Reichhardt, Phys. Rev. Lett. 110, 267001 (2013). [5] A. T. Fiory, A. F. Hebard, and S. Somekh, Appl. Phys. Lett. 32, 73 (1978). [6] K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, and V. V. Moshchalkov, Science 274, 1167 (1996). [7] V. Metlushko, U. Welp, G. W. Crabtree, R. Osgood, S. D. Bader, L. E. DeLong, Z. Zhang, S. R. J. Brueck, B. Ilic, K. Chung, and P. J. Hesketh, Phys. Rev. B 60, R12585 (1999). [8] G. R. Berdiyorov, M. V. Miloševic, and F. M. Peeters, Phys. Rev. Lett. 96, 207001 (2006); Phys. Rev. B 74, 74512 (2006). [9] A. Bezryadin, Yu. N. Ovchinnikov, and B. Pannetier, Phys. Rev. B 53, 8553 (1996). [10] S. Raedts, A. V. Silhanek, M. J. Van Bael, and V. V. Moshchalkov, Phys. Rev. B 70, 024509 (2004). [11] J. I. Martín, M. Vélez, J. Nogués, and I. K. Schuller, Phys. Rev. Lett. 79, 1929 (1997). [12] M. Lange, M. J. Van Bael, Y. Bruynseraede, and V. V. Moshchalkov, Phys. Rev. Lett. 90, 197006 (2003); M. V. Miloševi ć and F. M. Peeters, Europhys. Lett. 70, 670 (2005). [13] Y. Jaccard, J. I. Martín, M.-C. Cyrille, M. Velez, J. L. Vicent, and I. K. Schuller, Phys. Rev. B 58, 8232 (1998). [14] M. J. Van Bael, K. Temst, V. V. Moshchalkov, and Y. Bruynseraede, Phys. Rev. B 59, 14674 (1999). [15] X. S. Ling, H. J. Lezec, M. J. Higgins, J. S. Tsai, J. Fujita, H. Numata, Y. Nakamura, Y. Ochiai, Chao Tang, P. M. Chaikin, and S. Bhattacharya, Phys. Rev. Lett. 76, 2989 (1996). [16] R. D. Parks and W. A. Little, Phys. Rev. 133, A97 (1964) [17] B. Pannetier, J. Chaussy, R. Rammal, and J. C. Villegier, Phys. Rev. Lett. 53, 1845 (1984). [18] G. R. Berdiyorov, V. R. Misko, M. V. Miloševic, W. Escoffier, I. V. Grigorieva, and F. M. Peeters, Phys. Rev. B 77, 024526 (2008). [19] J. I. Facio, A. Abate, J. Guimpel, and P. S. Cornaglia, J. Phys.: Condens. Matter 25, 245701 (2013). [20] S. J. Carreira, C. Chiliotte, V. Bekeris, Y. J. Rosen, C. Monton, and I. K. Schuller, Supercond. Sci. Technol. 27, 085007 (2014). [21] C.-P. Li, I. V. Roshchin, X. Batlle, M. Viret, F. Ott, and I. K. Schuller, J. Appl. Phys. 100, 074318 (2006). [22] J. E. Allen, K. G. Yager, H. Hlaing, C. Y. Nam, B. M. Ocko, and C. T. Black, Appl. Phys. Lett. 99, 163301 (2011). [23] I. Valmianski, C. Monton, and I. K. Schuller, Rev. Sci. Instrum. 85, 033701 (2014). [24] J. G. Ramírez, A. C. Basaran, J. de la Venta, J. Pereiro, and I. K. Schuller, Rep. Prog. Phys. 77, 093902 (2014). [25] M. I. Montero, J. J. Akerman, A. Varilci, and I. K. Schuller, Europhys. Lett. 63, 118 (2003). [26] S. Bose, P. Raychaudhuri, R. Banerjee, P. Vasa, and P. Ayyub, Phys. Rev. Lett. 95, 147003 (2005). [27] C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996). [28] I. A. Garifullin, N. N. Garif’yanov, R. I. Salikhov, and L. R. Tagirov, JETP Lett. 87, 316 (2008). [29] C. P. Bean, Phys. Rev. Lett. 8, 250 (1962); Rev. Mod. Phys. 36, 31 (1964). [30] U. Patel, Z. L. Xiao, J. Hua, T. Xu, D. Rosenmann, V. Novosad, J. Pearson, U. Welp, W. K. Kwok, and G. W. Crabtree, Phys. Rev. B 76, 020508(R) (2007). [31] V. V. Moshchalkov, M. Baert, V. V. Metlushko, E. Rosseel, M. J. Van Bael, K. Temst, Y. Bruynseraede, and R. Jonckheere, Phys. Rev. B 57, 3615 (1998). [32] U. Welp, Z. L. Xiao, J. S. Jiang, V. K. Vlasko-Vlasov, S. D. Bader, G. W. Crabtree, J. Liang, H. Chik, and J. M. Xu, Phys. Rev. B 66, 212507 (2002). [33] M. Tinkham, D. W. Abraham, and C. J. Lobb, Phys. Rev. B 28, 6578 (1983). [34] V. V. Metlushko, L. E. DeLong, V. V. Moshchalkov, and Y. Bruynseraede, Physica C 391, 196 (2003). [35] C. Reichhardt and C. J. Olson Reichhardt, Phys. Rev. B 79, 134501 (2009). [36] L. E. De Long, S. Kryukov, V. V. Metlushko, V. V. Moshchalkov, | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ceb875eb-f735-40b1-8e02-26e6a8f34a5e | |
relation.isAuthorOfPublication.latestForDiscovery | ceb875eb-f735-40b1-8e02-26e6a8f34a5e |
Download
Original bundle
1 - 1 of 1