Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Latency and resource consumption analysis for serverless edge analytics

dc.contributor.authorMoreno Vozmediano, Rafael Aurelio
dc.contributor.authorHuedo Cuesta, Eduardo
dc.contributor.authorSantiago Montero, Rubén Manuel
dc.contributor.authorMartín Llorente, Ignacio
dc.date.accessioned2023-06-22T10:42:31Z
dc.date.available2023-06-22T10:42:31Z
dc.date.issued2022-03-16
dc.description.abstractThe serverless computing model, implemented by Function as a Service (FaaS) platforms, can offer several advantages for the deployment of data analytics solutions in IoT environments, such as agile and on-demand resource provisioning, automatic scaling, high elasticity, infrastructure management abstraction, and a fine-grained cost model. Nonetheless, in case of applications with strict latency requirements, the cold start problem in FaaS platforms can represent an important drawback. The most common techniques to alleviate this problem, mainly based on instance pre-warming and instance reusing mechanisms, are usually not well adapted to different application profiles and, in general, can entail an extra expense of resources. In this work, we analyze the effect of instance pre-warming and instance reusing on both, application latency (response time) and resource consumption, for a typical data analytics use case (a machine learning application for image classification) with different input data patterns. Furthermore, we propose to extend the classical centralized cloud-based serverless FaaS platform to a two-tier distributed edge-cloud platform to bring the platform closer to the data source and reduce network latencies.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedFALSE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid
dc.description.statussubmitted
dc.eprint.idhttps://eprints.ucm.es/id/eprint/72266
dc.identifier.doi10.21203/rs.3.rs-1457500/v1
dc.identifier.issn2192-113X
dc.identifier.officialurlhttps://doi.org/10.21203/rs.3.rs-1457500/v1
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71458
dc.journal.titleJournal of Cloud Computing
dc.language.isoeng
dc.page.final16
dc.page.initial1
dc.publisherSpringer
dc.relation.projectIDONEedge (880412)
dc.relation.projectIDEdgeCloud (RTI2018-096465-B-I00)
dc.relation.projectIDEdgeData (P2018/TCS4499)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordServerless Computing
dc.subject.keywordFunction as a Service (FaaS)
dc.subject.keywordEdge Computing
dc.subject.keywordCloud Computing
dc.subject.keywordData Analytics
dc.subject.keywordInternet of Things (IoT).
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleLatency and resource consumption analysis for serverless edge analytics
dc.typejournal article
dc.type.hasVersionSMUR
dspace.entity.typePublication
relation.isAuthorOfPublication9ad078d4-e5c4-4ca9-8b7b-b7959fc463c6
relation.isAuthorOfPublication1e00ea98-eddc-4639-a5e9-bff2db4f17c5
relation.isAuthorOfPublication528196d4-672f-46f5-8927-77320f36e0ab
relation.isAuthorOfPublicationcc5c2f18-fcb5-46f6-b3b7-de959a39dd08
relation.isAuthorOfPublication.latestForDiscovery1e00ea98-eddc-4639-a5e9-bff2db4f17c5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
preprint-version.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format

Collections