Subdifferentiable functions satisfy Lusin properties of class C^{1} or C^{2}
dc.contributor.author | Azagra Rueda, Daniel | |
dc.contributor.author | Ferrera Cuesta, Juan | |
dc.contributor.author | García Bravo, Miguel | |
dc.contributor.author | Gómez Gil, Javier | |
dc.date.accessioned | 2025-02-07T15:40:10Z | |
dc.date.available | 2025-02-07T15:40:10Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Let f : Rn →Rbeafunction.Assumethat for a measurable set Ω and almost every x ∈ Ω there exists a vector ξx ∈ Rn such that Lim inf h→0 f (x +h)− f(x)−⟨ξx,h⟩ / |h|2 >−∞. Then we show that f satisfies a Lusin-type property of order 2 in Ω, that is to say, for every ε > 0 there exists a function g ∈ C2(Rn) such that Ln({x ∈ Ω : f(x) ̸= g(x)}) ≤ ε. In particular every function which has a nonempty proximal subdifferential almost everywhere also has the Lusin property of class C2. We also obtain a similar result (replacing C2 with C1) for the Fréchet subdifferential. Finally we provide some examples showing that these kinds of results are no longer true for Taylor subexpansions of higher order. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Ciencias Matemáticas (ICMAT) | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía, Industria y Competitividad | |
dc.description.status | pub | |
dc.identifier.doi | 10.1016/j.jat.2018.03.001 | |
dc.identifier.officialurl | https://doi.org/10.1016/j.jat.2018.03.001 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/117923 | |
dc.journal.title | Journal of Approximation Theory | |
dc.language.iso | eng | |
dc.page.final | 12 | |
dc.page.initial | 1 | |
dc.publisher | Elsevier | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-65825-P/ES/ANALISIS FUNCIONAL NO LINEAL Y GEOMETRICO/ | |
dc.rights.accessRights | restricted access | |
dc.subject.keyword | Lusin property of order 2 | |
dc.subject.keyword | Proximal subdifferential | |
dc.subject.keyword | Fréchet subdifferential | |
dc.subject.ucm | Funciones (Matemáticas) | |
dc.subject.ucm | Análisis matemático | |
dc.subject.unesco | 12 Matemáticas | |
dc.title | Subdifferentiable functions satisfy Lusin properties of class C^{1} or C^{2} | |
dc.type | journal article | |
dc.volume.number | 230 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 | |
relation.isAuthorOfPublication | 1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3 | |
relation.isAuthorOfPublication | cfa32fef-8467-4320-9632-85e4db107086 | |
relation.isAuthorOfPublication | 88621a6e-cb08-45cc-a43e-43a388119938 | |
relation.isAuthorOfPublication.latestForDiscovery | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0021904518300200-main.pdf
- Size:
- 300.01 KB
- Format:
- Adobe Portable Document Format