Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Subdifferentiable functions satisfy Lusin properties of class C^{1} or C^{2}

dc.contributor.authorAzagra Rueda, Daniel
dc.contributor.authorFerrera Cuesta, Juan
dc.contributor.authorGarcía Bravo, Miguel
dc.contributor.authorGómez Gil, Javier
dc.date.accessioned2025-02-07T15:40:10Z
dc.date.available2025-02-07T15:40:10Z
dc.date.issued2018
dc.description.abstractLet f : Rn →Rbeafunction.Assumethat for a measurable set Ω and almost every x ∈ Ω there exists a vector ξx ∈ Rn such that Lim inf h→0 f (x +h)− f(x)−⟨ξx,h⟩ / |h|2 >−∞. Then we show that f satisfies a Lusin-type property of order 2 in Ω, that is to say, for every ε > 0 there exists a function g ∈ C2(Rn) such that Ln({x ∈ Ω : f(x) ̸= g(x)}) ≤ ε. In particular every function which has a nonempty proximal subdifferential almost everywhere also has the Lusin property of class C2. We also obtain a similar result (replacing C2 with C1) for the Fréchet subdifferential. Finally we provide some examples showing that these kinds of results are no longer true for Taylor subexpansions of higher order.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Ciencias Matemáticas (ICMAT)
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Industria y Competitividad
dc.description.statuspub
dc.identifier.doi10.1016/j.jat.2018.03.001
dc.identifier.officialurlhttps://doi.org/10.1016/j.jat.2018.03.001
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117923
dc.journal.titleJournal of Approximation Theory
dc.language.isoeng
dc.page.final12
dc.page.initial1
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//MTM2015-65825-P/ES/ANALISIS FUNCIONAL NO LINEAL Y GEOMETRICO/
dc.rights.accessRightsrestricted access
dc.subject.keywordLusin property of order 2
dc.subject.keywordProximal subdifferential
dc.subject.keywordFréchet subdifferential
dc.subject.ucmFunciones (Matemáticas)
dc.subject.ucmAnálisis matemático
dc.subject.unesco12 Matemáticas
dc.titleSubdifferentiable functions satisfy Lusin properties of class C^{1} or C^{2}
dc.typejournal article
dc.volume.number230
dspace.entity.typePublication
relation.isAuthorOfPublication6696556b-dc2e-4272-8f5f-fa6a7a2f5344
relation.isAuthorOfPublication1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3
relation.isAuthorOfPublicationcfa32fef-8467-4320-9632-85e4db107086
relation.isAuthorOfPublication88621a6e-cb08-45cc-a43e-43a388119938
relation.isAuthorOfPublication.latestForDiscovery6696556b-dc2e-4272-8f5f-fa6a7a2f5344

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0021904518300200-main.pdf
Size:
300.01 KB
Format:
Adobe Portable Document Format

Collections