Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Representing 3-manifolds by a universal branching set

dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-21T02:02:47Z
dc.date.available2023-06-21T02:02:47Z
dc.date.issued1983-07
dc.description.abstractThe author shows that every compact connected oriented 3-manifold, after capping off boundary components by cones, is a covering of S3 branched over the 1-complex G which is "a pair of eyeglasses''. The author gives algorithms for passing between a Heegaard decomposition of a 3-manifold and this covering description. He also determines necessary and sufficient conditions for such a covering to have cone singularities. In a paper by W. Thurston ["Universal links'', Preprint], a link with similar properties (for closed 3-manifolds) to G is constructed.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipComisión Asesora del Ministerio de Educación y Ciencia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17198
dc.identifier.doi10.1017/S0305004100060941
dc.identifier.issn0305-0041
dc.identifier.officialurlhttp://journals.cambridge.org/abstract_S0305004100060941
dc.identifier.relatedurlhttp://journals.cambridge.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64701
dc.issue.number1
dc.journal.titleMathematical Proceedings of the Cambridge Philosophical Society
dc.language.isoeng
dc.page.final123
dc.page.initial109
dc.publisherCambridge Univ Press
dc.rights.accessRightsrestricted access
dc.subject.cdu515.16
dc.subject.keywordbranched coverings of the 3-sphere
dc.subject.keywordfinite presentation of fundamental group
dc.subject.keywordcompact
dc.subject.keywordconnected
dc.subject.keywordoriented 3-manifold without 2-spheres in the boundary
dc.subject.keywordsingular 3-manifold
dc.subject.keywordHeegaard diagram
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleRepresenting 3-manifolds by a universal branching set
dc.typejournal article
dc.volume.number94
dcterms.referencesAlexander, J. W. Note on Riemann spaces. Bull. Amer. Math. Soc. 26 (1920), 370–372. Fox, R. H. Covering spaces with singularities. In Algebraic Geometry and Topology: a Symposium in Honor of S. Lefschetz (Princeton, 1957). Lyndon, R. C. & Schupp, P. E. Combinatorial group theory (Springer-Verlag 1977). Neuwirth, L. Knot groups. Ann. Math. Studies 56 (1965). Neuwirth, L. An algorithm for the construction of 3-manifolds from 2-complexes. Proc. Cambridge Philos. Soc. 64 (1968), 603–613 Poincaré, H. Cinquième complément à l'analysis situs. Rend. Circ. Mat. Palermo 18 (1904), 45–110. Ramírez, A. Sobre un teorema de Alexander. Anales del Instituto de Matemáticas UNAM 15 (1975), 77–81. Seifert, H. & Threlfall, W. A textbook of topology (Academic Press, 1980). Waldhausen, F. Some problems on 3-manifolds. Proceedings of Symposia in Pure Mathematics 32 (1978), 313–322. Whitehead, J. H. C. On certain sets of elements in a free group. Proc. London Math. Soc. 41 (1936), 48–56.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos15.pdf
Size:
803.61 KB
Format:
Adobe Portable Document Format

Collections