Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Asymptotics for some nonlinear damped wave equation: finite time convergence versus exponential decay results

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorBaji, B.
dc.contributor.authorCabot, Alexandre
dc.date.accessioned2023-06-20T09:34:30Z
dc.date.available2023-06-20T09:34:30Z
dc.date.issued2007-11
dc.description.abstractGiven a bounded open set Omega subset of R-n and a continuous convex function Phi: L-2(Omega) -> R, let us consider the following damped wave equation u(tt) - Delta u + partial derivative Phi(u(t)) 0, (t, x) is an element of (0, +infinity) x Omega, (S) under Dirichlet boundary conditions. The notation partial derivative Phi refers to the subdifferential of Phi in the sense of convex analysis. The nonlinear term partial derivative Phi allows to modelize a large variety of friction problems. Among them, the case Phi = vertical bar.vertical bar L-1 corresponds to a Coulomb friction, equal to the opposite of the velocity sign. After we have proved the existence and uniqueness of a solution to (S), our main purpose is to study the asymptotic properties of the dynamical system (S). In two significant situations, we bring to light an interesting phenomenon of dichotomy: either the solution converges in a finite time or the speed of convergence is exponential as t -> +infinity. We also give conditions which ensure the finite time stabilization of (S) toward some stationary solution.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGISGPI (Spain).
dc.description.sponsorshipEU
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15287
dc.identifier.doi10.1016/j.anihpc.2006.10.005
dc.identifier.issn0294-1449
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0294144906001144
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49942
dc.issue.number6
dc.journal.titleAnnales de l'Institut Henri Poincare (C) Non Linear Analysis
dc.language.isoeng
dc.page.final1028
dc.page.initial1009
dc.publisherElsevier (Gauthier-Villars),
dc.relation.projectIDMTM2005-03463
dc.relation.projectIDRTN HPRN-CT-2002-00274
dc.rights.accessRightsrestricted access
dc.subject.cdu517.91
dc.subject.keywordsolid friction
dc.subject.keywordmotion
dc.subject.keyworddamped wave equation
dc.subject.keyworddry friction
dc.subject.keywordsecond-order differential inclusion
dc.subject.keywordfinite time extinction
dc.subject.keywordexponential decay
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleAsymptotics for some nonlinear damped wave equation: finite time convergence versus exponential decay results
dc.typejournal article
dc.volume.number24
dcterms.referencesS. Adly, H. Attouch, A. Cabot, Finite time stabilization of nonlinear oscillators subject to dry friction, in: P. Alart, O. Maisonneuve, R.T. Rockafellar (Eds.), Progresses in Nonsmooth Mechanics and Analysis, in: Advances in Mathematics and Mechanics, Kluwer, 2006, pp. 289–304. B. Baji, A. Cabot, An inertial proximal algorithm with dry friction: finite convergence results, Set Valued Anal. 14 (1) (2006) 1–23. A. Bamberger, H. Cabannes, Mouvement d'une corde vibrante soumise à un frottement solide, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 699–702. V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces, second ed., D. Reidel, Dordrecht, 1986. N. Bogolioubov, I. Mitropolski, Les méthodes asymptotiques en théorie des oscillations non linéaires, Gauthier-Villars, Paris, 1962. H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl. 51 (1972) 1–168. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies, vol. 5, North-Holland, Amsterdam, 1973. B. Brogliato, Nonsmooth Mechanics, second ed., Springer CCES, London, 1999. H. Cabannes, Mouvement d'une corde vibrante soumise à un frottement solide, C. R. Acad. Sci. Paris Sér. A-B 287 (1978) 671–673. H. Cabannes, Study of motions of a vibrating string subject to solid friction, Math. Methods Appl. Sci. 3 (1981) 287–300. A. Cabot, Stabilization of oscillators subject to dry friction: finite time convergence versus exponential decay results, Trans. Amer. Math. Soc., in press. T. Cazenave, A. Haraux, An introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 13, 1998. C.M. Dafermos, M. Slemrod, Asymptotic behavior of non linear contraction semi-groups, J. Funct. Anal. 12 (1973) 97–106. J.I. Díaz, V. Millot, Coulomb friction and oscillation: stabilization in finite time for a system of damped oscillators, in: XVIII CEDYA: Congress on Differential Equations and Applications/VIII CMA: Congress on Applied Mathematics, Tarragona, 2003. J.K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25, Amer. Math. Soc., Providence, RI, 1988. A. Haraux, Opérateurs maximaux monotones et oscillations forcées non linéaires, Thèse, Université Pierre et Marie Curie, Paris, 1978. A. Haraux, Comportement à l'infini pour certains systèmes dissipatifs non linéaires, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979) 213–234. A. Haraux, Nonlinear Evolution Equations. Global Behavior of Solutions, Lecture Notes in Mathematics, vol. 841, Springer-Verlag, New York, 1981. A. Haraux, Systèmes dynamiques dissipatifs et applications, RMA, vol. 17, Masson, Paris, 1991. P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhäuser, Boston, 1985. R.T. Rockafellar, R. Wets, Variational Analysis, Springer, Berlin, 1998. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
35.pdf
Size:
624.35 KB
Format:
Adobe Portable Document Format

Collections