Dieudonné operators on C(K,E)
dc.contributor.author | Bombal Gordón, Fernando | |
dc.contributor.author | Cembranos, Pilar | |
dc.date.accessioned | 2023-06-21T02:03:52Z | |
dc.date.available | 2023-06-21T02:03:52Z | |
dc.date.issued | 1986 | |
dc.description.abstract | A Banach space operator is called a Dieudonné operator if it maps weakly Cauchy sequences to weakly convergent sequences. A space E is said to have property (D) if, whenever K is a compact Hausdorff space and T is an operator from C(K,E) into a space F , T is a Dieudonné operator if and only if its representing measure is both strongly additive and has for its values Dieudonné operators from E into F . The purpose of this paper is to show that if E ∗ has the Radon-Nikodým property then E has (D) if and only if E ∗∗ has the Radon-Nikodým property. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/18038 | |
dc.identifier.issn | 0239-7269 | |
dc.identifier.officialurl | http://journals.impan.gov.pl/ba/ | |
dc.identifier.relatedurl | http://www.impan.pl/EN/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64752 | |
dc.issue.number | 5-6 | |
dc.journal.title | Bulletin of the Polish Academy of Sciences. Mathematics | |
dc.language.iso | spa | |
dc.page.final | 305 | |
dc.page.initial | 301 | |
dc.publisher | Polish Academy of Sciences | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | space of continuous vector valued functions | |
dc.subject.keyword | Dieudonné operator | |
dc.subject.keyword | representing measure | |
dc.subject.keyword | semivariation | |
dc.subject.ucm | Geometría diferencial | |
dc.subject.unesco | 1204.04 Geometría Diferencial | |
dc.title | Dieudonné operators on C(K,E) | |
dc.type | journal article | |
dc.volume.number | 34 | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1