Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fuzzy logic applications to Fire Control systems

dc.book.title2006 IEEE International Conference on Fuzzy Systems
dc.contributor.authorDel Amo, Ana
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorGómez González, Daniel
dc.date.accessioned2023-06-20T13:38:33Z
dc.date.available2023-06-20T13:38:33Z
dc.date.issued2006-07-16
dc.descriptionIEEE International Conference on Fuzzy Systems JUL 16-21, 2006
dc.description.abstractThe paper objective is to study and solve one of the problems encountered in the development of a Fire Control system. Fire Control encompasses all operations required to apply fire on a target. We can not cover in this paper the whole set of mathematical problems in which Fire Control applications can be divided. Therefore, we will focus in one of the initial phases, the Target Detection problem. In general, the application of a segmentation algorithm to a data set as a preprocessing of the data previous to an unsupervised classification algorithm improves the probability of detection. The paper presents such a combination. Expert information about the encounter classes will be used for a supervised classification of the example picture. In the first place, we will use a segmentation algorithm to found the natural homogeneous classes in the data. These classes will be explored by an unsupervised clustering algorithm. The unsupervised classification will be performed on the segmented. image. Once the classes have been determined that way the classification will be done over the original image.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16937
dc.identifier.doi10.1109/FUZZY.2006.1681877
dc.identifier.isbn978-0-7803-9488-9
dc.identifier.officialurlhttps//doi.org/10.1109/FUZZY.2006.1681877
dc.identifier.relatedurlhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1681877
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53165
dc.language.isoeng
dc.page.final1304
dc.page.initial1298
dc.publication.placeVancouver, Canada
dc.publisherIeee
dc.relation.ispartofseriesIEE monograph series
dc.relation.projectIDMTM2005-08982-C04-01.
dc.rights.accessRightsrestricted access
dc.subject.cdu004.8
dc.subject.keywordComputer Science
dc.subject.keywordArtificial Intelligence
dc.subject.keywordEngineering
dc.subject.keywordElectrical & Electronic
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleFuzzy logic applications to Fire Control systemsen
dc.typebook part
dc.volume.number1-5
dcterms.referencesR. G. Cogalton and K. Green, “Assessing the accuracy of remote sensed data: Principles and Practices,” Lewis publishers, London, New York and Washington D.C, 1999. T. Calvo, G. Mayor and R. Mesiar, ”Aggregation Operators. Physica-Verlag,” Heidelberg 2002. B.B. Chaudhuri and A. Bhattacharya, ”On correlation between two fuzzy sets” Fuzzy Sets and Systems 118, 447-456, 2001. A. Del Amo, J. Montero and G. Biging, ”Classifying pixels by means of fuzzy relations,” International Journal of General Systems 29:605–621,1999. A. Del Amo, J. Montero, G. Biging and V.Cutello, ”Fuzzy classification systems,” European Journal of Operational Research 156, 459-507,2004. A. Del Amo, J. Montero, A. Fernandez, M. Lopez, J. Tordesillas and G. Biging, ”Spectral fuzzy classification: an application”. IEEE Trans on Systems, Man and Cybernetics, Part C 32:42–48, 2002. A. Del Amo, D. Gomez and J. Montero, ”Spectral Fuzzy Classification:A Supervised Approach” Mathware and Soft Computing, Vol X n 2-3 pp. 141–154, 2003. D. Gomez, J. Montero, J. Yanez and C. Poidomani, ”A graph coloring algorithm approach for image segmentation,” Omega (to appear). D. Gomez, J. Montero and J. Yanez, ”A coloring fuzzy graph approach for image classification,” Information Sciences (to appear). R. C. Gonzalez and R. E. Woods, ”Digital Image Processing” Prentice Hall, 2002. J. R. Jensen, ”Introductory Digital Image Processing. A Remote Sensing Perspective”. Prentice Hall, 1986. A.D. Pearman, J. Montero and J. Tejada: ”Fuzzy multicriteria decision support for budget allocation in the transport sector”. TOP 3:47–68,1995. P.M. Pardalos, T. Mavridou and J. Xue, “The Graph Coloring Problem:A Bibliographic Survey.” in Handbook of Intelligent Control: Neural,Fuzzy, and Adaptive Approaches D.Z. Du and P.M. Pardalos (Eds.):Handbook of Combinatorial Optimization, vol. 2. Kluwer Academic Publishers, Boston; pp. 331-395 1998. L. A. Zadeh, ”Fuzzy Sets” Information and Control 8:338–353, 1965.
dspace.entity.typePublication
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication.latestForDiscovery9e4cf7df-686c-452d-a98e-7b2602e9e0ea

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero41.pdf
Size:
703.69 KB
Format:
Adobe Portable Document Format