Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Pacific centennial oscillation predicted by coupled GCMs

dc.contributor.authorKarnauskas, Kristopher B.
dc.contributor.authorSmerdon, Jason E.
dc.contributor.authorSeager, Richard
dc.contributor.authorGonzález Rouco, Jesús Fidel
dc.date.accessioned2023-06-20T04:06:53Z
dc.date.available2023-06-20T04:06:53Z
dc.date.issued2012-09-01
dc.description© 2012 American Meteorological Society. The authors thank two anonymous reviewers for their insightful comments throughout the review process, and Delia Oppo for her constructive feedback on an early draft of this manuscript. KBK gratefully acknowledges support from the WHOI Ocean and Climate Change Institute (OCCI). JES and RS were supported by NOAA's Climate Variability and Predictability Program (Award NA10OAR431037). We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI), and the WCRP's Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multimodel dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. Thanks especially to NOAA GFDL for providing the millennial simulation output of the GFDL CM2.1.
dc.description.abstractInternal climate variability at the centennial time scale is investigated using long control integrations from three state-of-the-art global coupled general circulation models. In the absence of external forcing, all three models produce centennial variability in the mean zonal sea surface temperature (SST) and sea level pressure (SLP) gradients in the equatorial Pacific with counterparts in the extratropics. The centennial pattern in the tropical Pacific is dissimilar to that of the interannual El Nino-Southern Oscillation (ENSO), in that the most prominent expression in temperature is found beneath the surface of the western Pacific warm pool. Some global repercussions nevertheless are analogous, such as a hemispherically symmetric atmospheric wave pattern of alternating highs and lows. Centennial variability in western equatorial Pacific SST is a result of the strong asymmetry of interannual ocean heat content anomalies, while the eastern equatorial Pacific exhibits a lagged, Bjerknes-like response to temperature and convection in the west. The extratropical counterpart is shown to be a flux-driven response to the hemispherically symmetric circulation anomalies emanating from the tropical Pacific. Significant centennial-length trends in the zonal SST and SLP gradients rivaling those estimated from observations and model simulations forced with increasing CO_2 appear to be inherent features of the internal climate dynamics simulated by all three models. Unforced variability and trends on the centennial time scale therefore need to be addressed in estimated uncertainties, beyond more traditional signal-to-noise estimates that do not account for natural variability on the centennial time scale.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipWHOI Ocean and Climate Change Institute (OCCI)
dc.description.sponsorshipNational Oceanic and Atmospheric Administration (NOAA)
dc.description.sponsorshipOpen Cloud Computing Interface (OCCI)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/36118
dc.identifier.doi10.1175/JCLI-D-11-00421.1
dc.identifier.issn0894-8755
dc.identifier.officialurlhttp://dx.doi.org/10.1175/JCLI-D-11-00421.1
dc.identifier.relatedurlhttp://journals.ametsoc.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44928
dc.issue.number17
dc.journal.titleJournal of climate
dc.language.isoeng
dc.page.final5961
dc.page.initial5943
dc.publisherAmerican Meteorological Society
dc.relation.projectIDNA10OAR431037
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordSea-surface temperature
dc.subject.keywordEl niño-like
dc.subject.keywordSouthern-oscillation
dc.subject.keywordEquatorial Pacific
dc.subject.keywordPast millennium
dc.subject.keywordAir-temperature
dc.subject.keywordClimate models
dc.subject.keywordVariability
dc.subject.keywordMechanisms
dc.subject.keywordOcean
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleA Pacific centennial oscillation predicted by coupled GCMs
dc.typejournal article
dc.volume.number25
dcterms.referencesAmmann, C. M., F. Joos, D. S. Schimel, B. L. Otto-Bliesner, and R. A. Tomas, 2007: Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model. Proc. Natl. Acad. Sci. USA, 104, 3713–3718, doi:10.1073/pnas.0605064103. Bagnato, S., B. K. Linsley, S. S. Howe, G. M. Wellington, and J. Salinger, 2005: Coral oxygen isotope records of interdecadal climate variations in the South Pacific convergence zone region. Geochem. Geophys. Geosyst., 6, Q06001, doi:10.1029/2004GC000879. Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820–829. Bunge, L., and A. J. Clarke, 2009: A verified estimate of the El Niño index Niño-3.4 since 1877. J. Climate, 22, 3979-3992. Burgman, R., R. Seager, A. C. Clement, and C. Herweijer, 2010: Role of tropical Pacific SSTs in global medieval hydroclimate: A modeling study. Geophys. Res. Lett., 37, L06705, doi:10.1029/2009GL042239. Cane, M. A., 2005: The evolution of El Niño, past and future. Earth Planet. Sci. Lett., 230, 227–240. ——, A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957-960. Compo, G. P., and P. D. Sardeshmukh, 2010: Removing ENSOrelated variations from the climate record. J. Climate, 23, 1957–1978. Conroy, J. L., A. Restrepo, J. T. Overpeck, M. Steinitz-Kannan, J. E. Cole, M. B. Bush, and P. A. Colinvaux, 2009: Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean. Nat. Geosci., 2, 46–50. Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643–674. Deser, C., and J. M. Wallace, 1987: El Niño events and their relation to the Southern Oscillation: 1925–1986. J. Geophys. Res., 92 (C13), 14 189–14 196. ——, A. S. Phillips, and M. A. Alexander, 2010: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, doi:10.1029/2010GL043321. DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 4873-4892. Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 4973–4991. González Rouco, F. J., H. von Storch, and E. Zorita, 2003: Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years. Geophys. Res. Lett., 30, 2116, doi:10.1029/2003GL018264. ——, H. Beltrami, E. Zorita, and H. von Storch, 2006: Simulation and inversion of borehole temperature profiles in surrogate climates: Spatial distribution and surface coupling. Geophys. Res. Lett., 33, L01703, doi:10.1029/2005GL024693. ——, and Coauthors, 2011: Medieval Climate Anomaly to Little Ice Age transition as simulated by current climate models. PAGES News, No. 1, PAGES International Project Office, Bern, Switzerland, 7–8. Graham, N. E., C. M. Ammann, D. Fleitmann, K. M. Cobb, and J. Luterbacher, 2010: Support for global climate reorganization during the ‘‘Medieval Climate Anomaly.’’ Climate Dyn., 37, 1217–1245. Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699. Hoerling, M. P., J. Eischeid, and J. Perlwitz, 2010: Regional precipitation trends: Distinguishing natural variability from anthropogenic forcing. J. Climate, 23, 2131–2145. Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196. Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103 (C9), 18 567–18 589. Karnauskas, K. B., R. Seager, A. Kaplan, Y. Kushnir, and M. A. Cane, 2009: Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J. Climate, 22, 4316–4321. Kumar, A., B. Jha, and M. L’Heureux, 2010: Are tropical SST trends changing the global teleconnection during La Niña? Geophys. Res. Lett., 37, L12702, doi:10.1029/2010GL043394. Legutke, S., and E. Maier-Reimer, 1999: Climatology of the HOPE-G global ocean-sea ice general circulation model. DKRZ Tech. Rep. 21, 90 pp. ——, and R. Voss, 1999: The Hamburg atmosphere-ocean coupled circulation Model ECHO-G. DKRZ Tech. Rep. 18, 62 pp. Li, J., S.-P. Xie, E. R. Cook, G. Huang, R. D’Arrigo, F. Liu, J. Ma, and X.-T. Zheng, 2011: Interdecadal modulation of El Niño amplitude during the past millennium. Nature Climate Change, 1, 114–118. Linsley, B. K., L. Ren, R. B. Dunbar, and S. S. Howe, 2000: El Niño Southern Oscillation (ENSO) and decadal-scale climate variability at 108N in the eastern Pacific from 1893 to 1994: A coral-based reconstruction from Clipperton Atoll. Paleoceanography, 15, 322–335, doi:10.1029/1999PA000428. ——, A. Kaplan, Y. Gouriou, J. Salinger, P. B. deMenocal, G. M. Wellington, and S. S. Howe, 2006: Tracking the extent of the South Pacific convergence zone since the early 1600s. Geochem. Geophys. Geosyst., 7, Q05003, doi:10.1029/2005GC001115. Lough, J. M., 2007: Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia. Paleoceanography, 22, PA2218, doi:10.1029/2006PA001377. McGregor, S., A. Timmermann, and O. Timm, 2010: A unified proxy for ENSO variability since 1650. Climate Past, 6, 1-17. Min, S.-K., S. Legutke, A. Hense, and W.-T. Kwon, 2005: Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G - I. Near-surface temperature, precipitation and mean sea level pressure. Tellus, 57A, 605–621. Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 5904–5924. Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 5826–5843. Quinn, T. M., F. W. Taylor, and T. J. Crowley, 2006: Coral-based climate variability in the western Pacific warm pool since 1867. J. Geophys. Res., 111, C11006, doi:10.1029/2005JC003243. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670. Richter, J. H., and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 1487-1499. Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max Planck Institute Rep. 218, 90 pp. Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485–503. Seager, R., and G. A. Vecchi, 2010: Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl. Acad. Sci. USA, 107, 21 277–21 282. ——, and N. Naik, 2012: A mechanisms-based approach to detecting recent anthropogenic hydroclimate change. J. Climate, 25, 236–261. ——, N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 2960–2978. ——, ——, W. A. Robinson, Y. Kushnir, M. F. Ting, H.-P. Huang, and J. Velez, 2005a: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quart. J. Roy. Meteor. Soc., 131, 1501–1527. ——, Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005b: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 4068–4091. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296. Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp. Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103 (C7), 14 291–14 324. Tung, K.-K., and J. Zhou, 2010: The Pacific’s response to surface heating in 130 yr of SST: La Niña–like or El Niño–like? J. Atmos. Sci., 67, 2649–2657. Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316-4340. ——, ——, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73-76. ——, A. C. Clement, and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Trans. Amer. Geophys. Union, 89, doi:10.1029/2008EO090002. Wara, M. W., A. C. Ravelo, and M. L. Delaney, 2005: Permanent El Niño-like conditions during the Pliocene warm period. Science, 309, 758–761. Webster, P. J., 1981: Mechanisms determining the atmospheric response to large-scale sea surface temperature anomalies. J. Atmos. Sci., 38, 554–571. Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710. ——, A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698–722. Yeh, S.-W., B. P. Kirtman, J.-S. Kug, W. Park, and M. Latif, 2011: Natural variability of the central Pacific El Niño event on multi-centennial time scales. Geophys. Res. Lett., 38, L02704, doi:10.1029/2010GL045886. Zebiak, S. E., and M. A. Cane, 1987: A model El Niño-Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278. Zhang, W., J. Li, and X. Zhao, 2010: Sea surface temperature cooling mode in the Pacific cold tongue. J. Geophys. Res., 115, C12042, doi:10.1029/2010JC006501.
dspace.entity.typePublication
relation.isAuthorOfPublicationb0dda0f2-5a69-45d6-8aec-ccc99f2dc468
relation.isAuthorOfPublication.latestForDiscoveryb0dda0f2-5a69-45d6-8aec-ccc99f2dc468

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gonzalezrouco09libre.pdf
Size:
7.41 MB
Format:
Adobe Portable Document Format

Collections