Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Comparison of methods for handling outliers in Cox regression model

dc.contributor.authorAlkan, N.
dc.contributor.authorPardo Llorente, M. Del Carmen
dc.contributor.authorAlkan, B.B.
dc.date.accessioned2024-06-06T08:11:28Z
dc.date.available2024-06-06T08:11:28Z
dc.date.issued2024-04-09
dc.description.abstractThe Cox regression analysis is used to determine the relationship between a dependent variable and covariates in survival analysis involving censored data. The proportional hazards assumption is one of the most important assumptions of Cox regression. Outliers may have a strong influence on the Cox regression model’s parameter estimates and lead to violation of the proportional hazard assumption. Therefore, having outliers in the data set is a problem for researchers. In this case, robust estimations are commonly used to infer the parameters in a more robust way. However, we explore a new approach consisting of considering an outlier as missing data and replacing it by the multiple imputation method. The aim of this study is to compare these two methods through simulation. Furthermore, an analysis of a lung cancer data set is considered for illustration. According to the results of the study carried out based on simulated data sets and a real data set, the multiple imputation method, which is a missing data analysis method, solves the problem of outliers better than the robust estimation method, as the outcome is closer to the results obtained through original data.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationAlkan, N., Pardo, M.C. and Alkan, B.B. Comparison of methods for handling outliers in Cox regression model’, Journal of the National Science Foundation of Sri Lanka, 2024 52(1):59-68.
dc.identifier.doi10.4038/jnsfsr.v52i1.11460
dc.identifier.issn2362-0161
dc.identifier.issn1391-4588
dc.identifier.urihttps://hdl.handle.net/20.500.14352/104719
dc.issue.number1
dc.journal.titleJournal of the National Science Foundation of Sri Lanka
dc.language.isoeng
dc.page.final68
dc.page.initial59
dc.publisherNational Science Foundation
dc.rightsAttribution-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.keywordCox Regression
dc.subject.keywordMultiple Imputation
dc.subject.keywordOutliers
dc.subject.keywordProportional hazard assumption
dc.subject.keywordRobust Cox regression
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleComparison of methods for handling outliers in Cox regression model
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number52
dspace.entity.typePublication
relation.isAuthorOfPublication6705340a-af5b-4626-b638-fff027982044
relation.isAuthorOfPublication.latestForDiscovery6705340a-af5b-4626-b638-fff027982044

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pardo_llorente_comparison.pdf
Size:
2.28 MB
Format:
Adobe Portable Document Format

Collections