Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On Denjoy-Dunford and Denjoy-Pettis integrals.

dc.contributor.authorGámez Merino, José Luis
dc.contributor.authorMendoza Casas, José
dc.date.accessioned2023-06-20T16:52:39Z
dc.date.available2023-06-20T16:52:39Z
dc.date.issued1998
dc.description.abstractThe two main results of this paper are the following: (a) If X is a Banach space and f : [a, b] --> X is a function such that x*f is Denjoy integrable for all x* is an element of X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function f : [a, b] --> c(0) which is not Pettis integrable on any subinterval in [a, b], while integral(J)f belongs to co for every subinterval J in [a, b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with Denjoy-Dunford and Denjoy-Pettis integrals are studied.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipD.G.I.C.Y.T.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15426
dc.identifier.issn0039-3223
dc.identifier.officialurlhttps://bit.ly/2IoNmoq
dc.identifier.relatedurlhttp://www.icm.edu.pl/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57301
dc.issue.number2
dc.journal.titleStudia Mathematica
dc.language.isoeng
dc.page.final133
dc.page.initial115
dc.publisherPolish Acad Sciencies Inst Mathematics
dc.relation.projectIDPB94-0243
dc.rights.accessRightsrestricted access
dc.subject.cdu517.986.6
dc.subject.cdu517.518.45
dc.subject.keywordBanach-valued functions
dc.subject.keywordDenjoy-Dunford integrals
dc.subject.keywordDenjoy-Pettis integrals
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleOn Denjoy-Dunford and Denjoy-Pettis integrals.
dc.typejournal article
dc.volume.number130
dcterms.referencesJ. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984. J. Diestel and J. J. Uhl, JI.) Vector Measu.res, Math. Surveys 15, Amer. Math. Soc., 1977. J N. Dunford and J. T. S chwartz, Linear Operators, Part J, Interscience, New York, 1958. R. A. Gordoll, The Denjoy extension Di the Bochner, Pettis, and Dunford integrals, Studia Math. 92 (1989), 73-91. The integrals 01 Lebesgue, Denjoy, Perron and Henstock, Grad. Stud. Math. 4, Amer. Math. Soc" Providence, 1994. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces J, Springer, 1977. S. Saks, Theory 01 the Integral, 2nd revised ed.) Hafner, New York, 1937.
dspace.entity.typePublication
relation.isAuthorOfPublication82bc6afe-22a9-4152-a980-f481478623eb
relation.isAuthorOfPublication3fdf00ed-ed02-482c-a736-bb87c2753a89
relation.isAuthorOfPublication.latestForDiscovery82bc6afe-22a9-4152-a980-f481478623eb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
02.pdf
Size:
838.35 KB
Format:
Adobe Portable Document Format

Collections