On Denjoy-Dunford and Denjoy-Pettis integrals.
dc.contributor.author | Gámez Merino, José Luis | |
dc.contributor.author | Mendoza Casas, José | |
dc.date.accessioned | 2023-06-20T16:52:39Z | |
dc.date.available | 2023-06-20T16:52:39Z | |
dc.date.issued | 1998 | |
dc.description.abstract | The two main results of this paper are the following: (a) If X is a Banach space and f : [a, b] --> X is a function such that x*f is Denjoy integrable for all x* is an element of X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function f : [a, b] --> c(0) which is not Pettis integrable on any subinterval in [a, b], while integral(J)f belongs to co for every subinterval J in [a, b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with Denjoy-Dunford and Denjoy-Pettis integrals are studied. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | D.G.I.C.Y.T. | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15426 | |
dc.identifier.issn | 0039-3223 | |
dc.identifier.officialurl | https://bit.ly/2IoNmoq | |
dc.identifier.relatedurl | http://www.icm.edu.pl/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57301 | |
dc.issue.number | 2 | |
dc.journal.title | Studia Mathematica | |
dc.language.iso | eng | |
dc.page.final | 133 | |
dc.page.initial | 115 | |
dc.publisher | Polish Acad Sciencies Inst Mathematics | |
dc.relation.projectID | PB94-0243 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.986.6 | |
dc.subject.cdu | 517.518.45 | |
dc.subject.keyword | Banach-valued functions | |
dc.subject.keyword | Denjoy-Dunford integrals | |
dc.subject.keyword | Denjoy-Pettis integrals | |
dc.subject.ucm | Análisis matemático | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | On Denjoy-Dunford and Denjoy-Pettis integrals. | |
dc.type | journal article | |
dc.volume.number | 130 | |
dcterms.references | J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984. J. Diestel and J. J. Uhl, JI.) Vector Measu.res, Math. Surveys 15, Amer. Math. Soc., 1977. J N. Dunford and J. T. S chwartz, Linear Operators, Part J, Interscience, New York, 1958. R. A. Gordoll, The Denjoy extension Di the Bochner, Pettis, and Dunford integrals, Studia Math. 92 (1989), 73-91. The integrals 01 Lebesgue, Denjoy, Perron and Henstock, Grad. Stud. Math. 4, Amer. Math. Soc" Providence, 1994. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces J, Springer, 1977. S. Saks, Theory 01 the Integral, 2nd revised ed.) Hafner, New York, 1937. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 82bc6afe-22a9-4152-a980-f481478623eb | |
relation.isAuthorOfPublication | 3fdf00ed-ed02-482c-a736-bb87c2753a89 | |
relation.isAuthorOfPublication.latestForDiscovery | 82bc6afe-22a9-4152-a980-f481478623eb |
Download
Original bundle
1 - 1 of 1