Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

LSTM networks provide efficient cyanobacterial blooms forecasting even with incomplete spatio-temporal data

dc.contributor.authorFournier, Claudia
dc.contributor.authorFernández Fernández, Raúl
dc.contributor.authorCirés, Samuel
dc.contributor.authorLópez Orozco, José Antonio
dc.contributor.authorBesada Portas, Eva
dc.contributor.authorQuesada, Antonio
dc.date.accessioned2024-10-14T17:58:40Z
dc.date.available2024-10-14T17:58:40Z
dc.date.issued2024-09-30
dc.description.abstractCyanobacteria are the most frequent dominant species of algal blooms in inland waters, threatening ecosystem function and water quality, especially when toxin-producing strains predominate. Enhanced by anthropogenic activities and global warming, cyanobacterial blooms are expected to increase in frequency and global distribution. Early warning systems (EWS) for cyanobacterial blooms development allow timely implementation of management measures, reducing the risks associated to these blooms. In this paper, we propose an effective EWS for cyanobacterial bloom forecasting, which uses 6 years of incomplete high-frequency spatio-temporal data from multiparametric probes, including phycocyanin (PC) fluorescence as a proxy for cyanobacteria. A probe agnostic and replicable method is proposed to pre-process the data and to generate time series specific for cyanobacterial bloom forecasting. Using these pre-processed data, six different non-site/species-specific predictive models were compared including the autoregressive and multivariate versions of Linear Regression, Random Forest, and Long-Term Short-Term (LSTM) neural networks. Results were analyzed for seven forecasting time horizons ranging from 4 to 28 days evaluated with a hybrid system that combined regression metrics (MSE, R2, MAPE) for PC values, classification metrics (Accuracy, F1, Kappa) for a proposed alarm level of 10 ug PC/L, and a forecasting-specific metric to measure prediction improvement over the displaced signal (skill). The multivariate version of LSTM showed the best and most consistent results across all forecasting horizons and metrics, achieving accuracies of up to 90% in predicting the proposed PC alarm level. Additionally, positive skill values indicated its outstanding effectiveness to forecast cyanobacterial blooms from 16 to 28 days in advance.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Comission
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.citationFournier, C., Fernandez-Fernandez, R., Cirés, S., López-Orozco, J.A., Besada-Portas, E., Quesada, A., 2024. LSTM networks provide efficient cyanobacterial blooms forecasting even with incomplete spatio-temporal data. Water Research 267, 122553. https://doi.org/10.1016/j.watres.2024.122553
dc.identifier.doi10.1016/j.watres.2024.122553
dc.identifier.issn0043-1354
dc.identifier.officialurlhttps://doi.org/10.1016/j.watres.2024.122553
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0043135424014520
dc.identifier.urihttps://hdl.handle.net/20.500.14352/108966
dc.journal.titleWater Research
dc.language.isoeng
dc.page.final122553-12
dc.page.initial122553-1
dc.publisherElsevier
dc.relation.projectID869178
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//PCI2021-121915
dc.relation.projectIDY2020/TCS-6420/IA-GES BLOOM
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//TED2021-130123B-100
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//PID2021-127648OB-C33
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu004.8
dc.subject.cdu543.3
dc.subject.keywordPhycocyanin fluorescence
dc.subject.keywordEarly warning
dc.subject.keywordRisk assessment
dc.subject.keywordTime-series
dc.subject.keywordDeep learning
dc.subject.keywordArtificial intelligence
dc.subject.ucmCiencias
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco2508.11 Calidad de las Aguas
dc.titleLSTM networks provide efficient cyanobacterial blooms forecasting even with incomplete spatio-temporal data
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number267
dspace.entity.typePublication
relation.isAuthorOfPublication31151278-4822-4a64-88a7-1dfad9699a0d
relation.isAuthorOfPublication26b95994-f79c-4d7c-8de5-a003d6d2a770
relation.isAuthorOfPublication0acc96fe-6132-45c5-ad71-299c9dcb6682
relation.isAuthorOfPublication.latestForDiscovery31151278-4822-4a64-88a7-1dfad9699a0d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0043135424014520-main.pdf
Size:
6.21 MB
Format:
Adobe Portable Document Format

Collections