Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A class of Hamilton-Jacobi equations on Banach-Finsler manifolds

dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.contributor.authorJiménez Sevilla, María Del Mar
dc.contributor.authorRodenas Pedregosa, J.L.
dc.contributor.authorSánchez González, L.
dc.date.accessioned2023-06-19T13:27:53Z
dc.date.available2023-06-19T13:27:53Z
dc.date.issued2015
dc.description.abstractThe concept of subdifferentiability is studied in the context of C-1 Finsler manifolds (modeled on a Banach space with a Lipschitz C-1 bump function). A class of Hamilton-Jacobi equations defined on C-1 Finsler manifolds is studied and several results related to the existence and uniqueness of viscosity solutions are obtained.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES (Spain)
dc.description.sponsorshipMEC
dc.description.sponsorshipCONICYT-Chile through FONDECYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28338
dc.identifier.doi10.1016/j.na.2014.09.031
dc.identifier.issn0362-546X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0362546X14003216
dc.identifier.relatedurlhttp://arxiv.org/pdf/1407.2977v2.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33777
dc.journal.titleNonlinear Analysis: Theory, Methods & Applications
dc.language.isoeng
dc.page.final179
dc.page.initial159
dc.publisherPergamon-Elsevier
dc.relation.projectIDMTM2012-34341
dc.relation.projectIDMTM2012-30942
dc.relation.projectIDBES-2013-066316
dc.relation.projectID11130354
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordFinsler manifolds
dc.subject.keywordVariational principles
dc.subject.keywordNonsmooth analysis
dc.subject.keywordViscosity solutions
dc.subject.keywordHamilton-Jacobi equations
dc.subject.keywordGeometry of Banach spaces.
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleA class of Hamilton-Jacobi equations on Banach-Finsler manifolds
dc.typejournal article
dc.volume.number113
dcterms.references[1] P. Angulo Ardoy and L. Guijarro, Balance split sets and Hamilton-Jacobi equations, Calc. Var. Partial Differential Equations 40 (2011), no. 1-2, 223–252. [2] D. Azagra, J. Ferrera and F. López-Mesas, Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds, J. Funct. Anal. 220 (2005), 304-361. [3] D. Azagra, J. Ferrera and F. López-Mesas, A maximum principle for evolution Hamilton-Jacobi equations on Riemannian manifolds, J. Math. Anal. Appl. 323 (2006),473-480. [4] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications 17, Springer-Verlag (1994). [5] J.M. Borwein and Q. J. Zhu, Viscosity solutions and viscosity subderivatives in smooth Banach spaces with applications to metric regularity, SIAM J. Control Optimization 34 (1996), No. 5, 1568–1591. [6] L.A. Caffarelli and M.G. Crandall, Distance functions and almost global solutions of Eikonal equations, Commu.in Partial Differential Equations 35 (2010), 391–414. [7] M.G. Crandall and P.L. Lions, Hamilton-Jacobi equations in infinite dimensions I. Uniqueness of viscosity solutions, J. Funct. Anal. 62(3) (1985), 379–396. [8] M.G. Crandall and P.L. Lions Hamilton-Jacobi quations in infinite dimensions II. Existence of viscosity solutions, J. Funct. Anal. 65 (1986), 368–405. [9] K. Deimling, Nonlinear Functional Analysis, Springer-Verlang, New York, (1985). [10] R. Deville, Smooth variational principles and non-smooth analysis in Banach spaces, Nonlinear Analysis, Differential Equations and Control Theory, NATO Science Series 528 (1999), 369-405. [11] R. Deville, A mean value theorem for the non differentiable mappings, Serdica Math. 21 (1995), 59-66. [12] R. Deville and E. El Haddad, The viscosity subdifferential of the sum of two functions in Banach Spaces I: First Order Case, Journal of Convex Analysis 32 (1996), 295-308. [13] R. Deville and N. Ghoussoub, Perturbed Minimization Principles and Applications, Handbook of Banach spaces Vol.1, Chapter 10, Editors W. B. Johnson and J. indenstrauss, Elsevier (2003). [14] R. Deville, G. Godefroy and V. Zizler, A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal. 111 (1993), 197–212. [15] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces with applications to Hamilton-Jacobi equations in infinite dimensions, Pitman Monographs Surveys Pure Appl. Math. 64, (1994). [16] E. M. El Haddad, Viscosity solutions of Hamilton-jacobi equations in smooth Banach spaces, Tokyo J. Math. 21(1) (1998), 35–47. [17] E. M. El Haddad, Solutions de viscosité des équations de Hamilton-Jacobi en dimension infinie. Cas stationnaire Publ. Mat. 39(1) (1995), 173–185. [18] H. Ishii, Perron’s method for Hamilton-Jacobi equations, Duke Mathematical Journal 55 (2) (1987), 369–384. [19] H. Ishii, A short introduction to viscosity solutions and the large time behavior of solutions of Hamilton-Jacobi equations, Hamilton-Jacobi equations: approximations, numerical analysis and applications, 111–249, Lecture Notes in Math. 2074, (2013). [20] M. Jiménez-Sevilla and L. Sánchez-Gonzalez, On some problems on smooth approximation and smooth extension of Lipschitz functions on Banach-Finsler manifolds, Nonlinear Analysis: Theory, Methods and Applications 74 (2011), 3487-3500. [21] S. Ledyaev and Q.J. Zhu, Nonsmooth analysis on smooth manifolds, Trans. Amer. Math. Soc. 359(8) (2007), 3687–3732. [22] P.L. Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics 69, Springer-Verlag 1994. [23] R.S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115-132. [24] P. J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. 146 (1997), 647-691. [25] A. Siconolfi, Metric character of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 355(5) (2003), 1987–2009
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication36c2a4e7-ac6d-450d-b64c-692a94ff6361
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jaramillo101.pdf
Size:
397.61 KB
Format:
Adobe Portable Document Format

Collections