Subcanonicity of codimension two subvarieties
dc.contributor.author | Arrondo Esteban, Enrique | |
dc.date.accessioned | 2023-06-20T09:27:04Z | |
dc.date.available | 2023-06-20T09:27:04Z | |
dc.date.issued | 2005 | |
dc.description.abstract | We prove that smooth subvarieties of codimension two in Grassmannians of lines of dimension at least six are rationally numerically subcanonical. We prove the same result for smooth quadrics of dimension at least six under some extra condition. The method is quite easy, and only uses Serre’s construction, Porteous formula and Hodge index theorem. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministry of Science and Technology, Research Project, Spain | |
dc.description.sponsorship | Acción Integrada” Spain and Italy. | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/12267 | |
dc.identifier.issn | 1988-2807 | |
dc.identifier.officialurl | http://www.mat.ucm.es/serv/revmat/ | |
dc.identifier.relatedurl | http://www.springerlink.de/content/121597/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49573 | |
dc.issue.number | 1 | |
dc.journal.title | Revista matemática complutense | |
dc.language.iso | eng | |
dc.page.final | 80 | |
dc.page.initial | 69 | |
dc.publisher | Universidad Complutense de Madrid | |
dc.relation.projectID | BFM2000-0621 | |
dc.relation.projectID | HI00-128 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 514.7 | |
dc.subject.keyword | Subcanonical varieties | |
dc.subject.keyword | Grassmannians | |
dc.subject.keyword | Quadrics | |
dc.subject.ucm | Geometría diferencial | |
dc.subject.unesco | 1204.04 Geometría Diferencial | |
dc.title | Subcanonicity of codimension two subvarieties | |
dc.type | journal article | |
dc.volume.number | 18 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 | |
relation.isAuthorOfPublication.latestForDiscovery | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 |
Download
Original bundle
1 - 1 of 1