Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Topología algebraica: homología singular

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2015

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

In this paper we introduce the singular homology theory. First, we develop its main characteristics and properties. Then, we mainly focus on using its power to deduce some important results in topology such as the Brouwer fixed point theorem in arbitrary dimension, the Invariance of Dimension and Domain, or the Jordan-Brouwer separation theorem. We also give a rough idea about simplicial homology and compare it with the singular one. After computing the homology of the spheres, we briefly introduce the degree theory, presenting its main properties and using them to prove the non existence of a continuous tangent vector field on S n and the uniqueness of Z2 as a nontrivial group acting freely on S n, both when n is even. As a final point, we present a generalization of the Jordan-Brouwer theorem that explains the difference between homology and homotopy: the Alexander horned sphere shows that Schönflies theorem fails in dimension ≥ 3, but the failure is homotopic, not homologic.

Research Projects

Organizational Units

Journal Issue

Description

Keywords