Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Convergence and Numerical Solution of a Model for Tumor Growth

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

n this paper, we show the application of the meshless numerical method called “Generalized Finite Diference Method” (GFDM) for solving a model for tumor growth with nutrient density, extracellular matrix and matrix degrading enzymes, [recently proposed by Li and Hu]. We derive the discretization of the parabolic–hyperbolic–parabolic–elliptic system by means of the explicit formulae of the GFDM. We provide a theoretical proof of the convergence of the spatial–temporal scheme to the continuous solution and we show several examples over regular and irregular distribution of points. This shows the feasibility of the method for solving this nonlinear model appearing in Biology and Medicine in complicated and realistic domains.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections