Conformal dilaton gravity: Classical noninvariance gives rise to quantum invariance.

dc.contributor.authorÁlvarez, Enrique
dc.contributor.authorGonzález Martín, Sergio
dc.contributor.authorPérez Martín, Carmelo
dc.date.accessioned2023-06-18T06:51:43Z
dc.date.available2023-06-18T06:51:43Z
dc.date.issued2016-03-09
dc.description©2016 American Physical Society. We are grateful for helpful discussions with Manuel Asorey and Mario Herrero-Valea. We also acknowledge a useful email exchange with Michael Duff as well as discussions with Roman Jackiw and So Young Pi. Part of this work was done while E. A. was at the Aspen Institute of Physics and at the Lawrence Berkeley Laboratory. We have been partially supported by the European Union FP7 ITN INVISIBLES (Marie Curie Actions, Grants No. PITN-GA-2011-289442 and No. HPRN-CT-200-00148 as well as by Grant No. FPA2012-31880 (Spain), Grant No. FPA2014- 54154-P, COST action MP1405 (Quantum Structure of Spacetime), and Grant No. S2009ESP-1473 (CA Madrid). The authors acknowledge the support of the Spanish MINECO Centro de Excelencia Severo Ochoa Programme under Grant No. SEV-2012-0249.
dc.description.abstractWhen quantizing conformal dilaton gravity, there is a conformal anomaly which starts at two-loop order. This anomaly stems from evanescent operators on the divergent parts of the effective action. The general form of the finite counterterm, which is necessary in order to insure cancellation of the Weyl anomaly to every order in perturbation theory, has been determined using only conformal invariance. Those finite counterterms do not have any inverse power of any mass scale in front of them (precisely because of conformal invariance), and then they are not negligible in the low-energy deep infrared limit. The general form of the ensuing modifications to the scalar field equation of motion has been determined, and some physical consequences have been extracted.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMinisterio de Economía Y Competitividad (MINECO), España
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipAcciones Marie Skłodowska-Curie (UE)
dc.description.sponsorshipEuropean Cooperation in Sciance and Technology (COST)
dc.description.sponsorshipPrograma Severo Ochoa (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37188
dc.identifier.doi10.1103/PhysRevD.93.064018
dc.identifier.issn2470-0010
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.93.064018
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24430
dc.issue.number6
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDINVISIBLES (289442)
dc.relation.projectIDFPA2012-31880
dc.relation.projectIDFPA2014- 54154-P
dc.relation.projectIDHEPHACOS (S2009/ESP-1473)
dc.relation.projectIDHPRN-CT-200-00148
dc.relation.projectIDQSPACE (COST action MP1405)
dc.relation.projectIDSEV-2012-0249
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordAstronomy & astrophysics
dc.subject.keywordPhysics
dc.subject.keywordParticles & fields
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleConformal dilaton gravity: Classical noninvariance gives rise to quantum invariance.
dc.typejournal article
dc.volume.number93
dcterms.references1. S. L. Adler, Anomalies to all orders, arXiv:hep-th/0405040. 2. B. Zumino, Chiral Anomalies And Differential Geometry: Lectures Given At Les Houches, August 1983, edited by S. b. Treiman et al.: Current Algebra and Anomalies*, 361-391 and Lawrence Berkeley Lab.—LBL-16747 (83,REC.OCT.) (Elsevier Science Ltd, 1984), p. 46. 3. N. Boulanger, General solutions of the Wess-Zumino consistency condition for the Weyl anomalies, J. High Energy Phys. 07 (2007) 069. 4. E. Alvarez, M. Herrero-Valea, and C. P. Martin, Conformal and nonconformal dilaton gravity, J. High Energy Phys. 10 (2014) 115. 5. H. Georgi, Unparticle Physics, Phys. Rev. Lett. 98, 221601 (2007). 6. S. Weinberg, Minimal fields of canonical dimensionality are free, Phys. Rev. D 86, 105015 (2012). 7. E. S. Fradkin and A. A. Tseytlin, Conformal supergravity, Phys. Rep. 119, 233 (1985). 8. G. ’t Hooft and M. J. G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. Henri Poincare, A 20, 69 (1974). 9. M. H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys. B266, 709 (1986). 10. G. ’t. Hooft, The conformal constraint in canonical quantum gravity, arXiv:1011.0061. 11. C. Fefferman and C. R. Graham, The ambient metric, arXiv:0710.0919; C. Fefferman and K. Hirachi, Ambient metric construction of Q-curvature in conformal and CR geometries, Math. Res. Lett. 10, 819 (2003). 12. C. Robin Graham and K. Hirachi, The ambient obstruction tensor and Q-Curvature, arXiv:math/0405068; C. Robin Graham, R. Jenne, L. J. Mason, and G. A. J. Sparling, Conformally Invariant Powers of the Laplacian, I: Existence, J. Lond. Math. Soc. s2-46, 557 (1992). 13. T. Branson and A. R. Gover, Conformally invariant operators, differential forms, cohomology and a generalisation of Q-curvature, arXiv:math/0309085. 14. S. Y. A. Chang, M. Eastwood, B. Orsted, and P. C. Yang, What is Q-curvature?, Acta Appl. Math. 102, 119 (2008). 15. S. Alexakis, On the decomposition of global conformal invariants I, arXiv:math/0509571.
dspace.entity.typePublication
relation.isAuthorOfPublicationbf7276d2-1dee-4422-a116-e02a2b8b0ba3
relation.isAuthorOfPublication.latestForDiscoverybf7276d2-1dee-4422-a116-e02a2b8b0ba3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PérezMartínCarmelo 45 LIBRE.pdf
Size:
202.26 KB
Format:
Adobe Portable Document Format

Collections