Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Flash-PEO as an alternative to chromate conversion coatings for corrosion protection of Mg alloy

dc.contributor.authorWierzbicka, Ewa
dc.contributor.authorVaghefinazari, B.
dc.contributor.authorLamaka, S.V.
dc.contributor.authorZheludkevich, Mikhail
dc.contributor.authorMohedano Sánchez, Marta
dc.contributor.authorMoreno Turiegano, Lara
dc.contributor.authorVisser, P.
dc.contributor.authorRodríguez, Alicia
dc.contributor.authorVelasco, Jorge
dc.contributor.authorArrabal Durán, Raúl
dc.contributor.authorMatykina, Endzhe
dc.date.accessioned2023-06-17T08:22:54Z
dc.date.available2023-06-17T08:22:54Z
dc.date.issued2020-11-14
dc.description.abstractIn the present work, a flash-PEO coating is developed on AZ31B alloy in a combination of silicate, phosphate, and fluoride based electrolyte in order to offer a green alternative to chromate conversion coatings. Multilevel active protection is achieved through synergetic combination of self-sealing effect of PEO coating itself and active inhibition provided by an organic inhibitor impregnated in PEO pores in a post-treatment step. The results indicate that flash-PEO coatings, loaded with organic corrosion inhibitors, can be recommended for exploitation on industrial level as an equally effective corrosion protection system alternative to CCC for paint-bearing and paint-free applications.
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)/FEDER
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/70853
dc.identifier.doi10.1016/j.corsci.2020.109189
dc.identifier.issn0010-938X
dc.identifier.officialurlhttps://doi.org/10.1016/j.corsci.2020.109189
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0010938X20324707
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6873
dc.journal.titleCorrosion Science
dc.language.isoeng
dc.page.initial109189
dc.publisherElsevier Science
dc.relation.projectIDALMAGIC (755515)
dc.relation.projectIDPROFABRICAD (RTI2018-096391-B-C33)
dc.relation.projectID(RYC-2017-21843)
dc.relation.projectIDADITIMAT-CM (S2018/NMT-4411)
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu66.0
dc.subject.cdu620
dc.subject.keywordMagnesium
dc.subject.keywordCoating
dc.subject.keywordPlasma electrolytic oxidation
dc.subject.keywordFlash-PEO
dc.subject.keywordFiliform corrosion
dc.subject.keywordPitting corrosion
dc.subject.keywordInhibitor
dc.subject.ucmIngeniería química
dc.subject.ucmMateriales
dc.subject.unesco3303 Ingeniería y Tecnología Químicas
dc.subject.unesco3312 Tecnología de Materiales
dc.titleFlash-PEO as an alternative to chromate conversion coatings for corrosion protection of Mg alloy
dc.typejournal article
dc.volume.number180
dcterms.referencesA.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey Plasma electrolysis for surface engineering Surf. Coatings Technol., 122 (1999), pp. 73-93, 10.1016/S0257-8972(99)00441-7 ArticleDownload PDFGoogle Scholar [2] D. Chen, R. Wang, Z. Huang, Y. Wu, Y. Zhang, G. Wu, D. Li, C. Guo, G. Jiang, S. Yu, D. Shen, P. Nash Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy Appl. Surf. Sci., 434 (2018), pp. 326-335, 10.1016/j.apsusc.2017.09.232 ArticleDownload PDFView Record in ScopusGoogle Scholar [3] F. Monfort, A. Berkani, E. Matykina, P. Skeldon, G.E. Thompson, H. Habazaki, K. Shimizu Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte Corros. Sci., 49 (2007), pp. 672-693, 10.1016/j.corsci.2006.05.046 ArticleDownload PDFView Record in ScopusGoogle Scholar [4] R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon, G.E. Thompson Characterization of AC PEO coatings on magnesium alloys Surf. Coatings Technol., 203 (2009), pp. 2207-2220, 10.1016/j.surfcoat.2009.02.011 ArticleDownload PDFView Record in ScopusGoogle Scholar [5] R. Arrabal, M. Mohedano, E. Matykina, A. Pardo, B. Mingo, M.C. Merino Characterization and wear behaviour of PEO coatings on 6082-T6 aluminium alloy with incorporated α-Al2O3 particles Surf. Coatings Technol., 269 (2015), pp. 64-73, 10.1016/j.surfcoat.2014.10.048 ArticleDownload PDFView Record in ScopusGoogle Scholar [6] M. Kaseem, S. Fatimah, N. Nashrah, Y.G. Ko Recent progress in surface modification of metals coated by plasma electrolytic oxidation: principle, structure, and performance Prog. Mater. Sci. (2020), Article 100735, 10.1016/j.pmatsci.2020.100735 in press View PDFGoogle Scholar [7] P. Cerchier, L. Pezzato, C. Gennari, E. Moschin, I. Moro, M. Dabalà PEO coating containing copper: a promising anticorrosive and antifouling coating for seawater application of AA 7075 Surf. Coatings Technol., 393 (2020), Article 125774, 10.1016/j.surfcoat.2020.125774 ArticleDownload PDFView Record in ScopusGoogle Scholar [8] E. Matykina, R. Arrabal, M. Mohedano, B. Mingo, J. Gonzalez, A. Pardo, M.C. Merino Recent advances in energy efficient PEO processing of aluminium alloys Trans. Nonferrous Met. Soc. China (English Ed., 27 (2017), pp. 1439-1454, 10.1016/S1003-6326(17)60166-3 ArticleDownload PDFView Record in ScopusGoogle Scholar [9] M. Mohedano, E. Matykina, R. Arrabal, B. Mingo, M.L. Zheludkevich PEO of rheocast A356 Al alloy: energy efficiency and corrosion properties Surf. Interface Anal., 48 (2016), pp. 953-959, 10.1002/sia.5815 View PDFView Record in ScopusGoogle Scholar [10] E. Wierzbicka, B. Pillado, M. Mohedano, R. Arrabal, E. Matykina Calcium doped flash-peo coatings for corrosion protection of Mg alloy Metals, 10 (2020), p. 916, 10.3390/met10070916 View PDFGoogle Scholar [11] R. del Olmo, M. Mohedano, P. Visser, E. Matykina, R. Arrabal Flash-PEO coatings loaded with corrosion inhibitors on AA2024 Surf. Coatings Technol., 402 (2020), Article 126317, 10.1016/j.surfcoat.2020.126317 ArticleDownload PDFView Record in ScopusGoogle Scholar [12] R. del Olmo, M. Mohedano, B. Mingo, R. Arrabal, E. Matykina LDH post-treatment of flash PEO coatings Coatings, 9 (2019), pp. 6-20, 10.3390/coatings9060360 View PDFGoogle Scholar [13] C. Blawert, W. Dietzel, E. Ghali, G. Song Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments Adv. Eng. Mater., 8 (2006), pp. 511-533, 10.1002/adem.200500257 View PDFView Record in ScopusGoogle Scholar [14] G. Barati Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade Plasma electrolytic oxidation of magnesium and its alloys: mechanism, properties and applications J. Magnes. Alloy, 5 (2017), pp. 74-132, 10.1016/j.jma.2017.02.004 ArticleDownload PDFView Record in ScopusGoogle Scholar [15] H.F. Guo, M.Z. An Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance Appl. Surf. Sci., 246 (2005), pp. 229-238, 10.1016/j.apsusc.2004.11.031 ArticleDownload PDFView Record in ScopusGoogle Scholar [16] L. Wang, L. Chen, Z. Yan, H. Wang, J. Peng Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy J. Alloys. Compd., 480 (2009), pp. 469-474, 10.1016/j.jallcom.2009.01.102 ArticleDownload PDFGoogle Scholar [17] B. Kazanski, A. Kossenko, M. Zinigrad, A. Lugovskoy Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy Appl. Surf. Sci., 287 (2013), pp. 461-466, 10.1016/j.apsusc.2013.09.180 ArticleDownload PDFView Record in ScopusGoogle Scholar [18] W. Mu, Y. Han Characterization and properties of the MgF2/ZrO2 composite coatings on magnesium prepared by micro-arc oxidation Surf. Coatings Technol., 202 (2008), pp. 4278-4284, 10.1016/j.surfcoat.2008.03.022 ArticleDownload PDFView Record in ScopusGoogle Scholar [19] S.P. Sah, Y. Aoki, H. Habazaki Influence of phosphate concentration on plasma electrolytic oxidation of AZ80 magnesium alloy in alkaline aluminate solution Mater. Trans., 51 (2010), pp. 94-102, 10.2320/matertrans.M2009226 View PDFView Record in ScopusGoogle Scholar [20] A. Ghasemi, V.S. Raja, C. Blawert, W. Dietzel, K.U. Kainer The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings Surf. Coatings Technol., 204 (2010), pp. 1469-1478, 10.1016/j.surfcoat.2009.09.069 ArticleDownload PDFView Record in ScopusGoogle Scholar [21] H. Ma, D. Li, C. Liu, Z. Huang, D. He, Q. Yan, P. Liu, P. Nash, D. Shen An investigation of (NaPO3)6 effects and mechanisms during micro-arc oxidation of AZ31 magnesium alloy Surf. Coatings Technol., 266 (2015), pp. 151-159, 10.1016/j.surfcoat.2015.02.033 ArticleDownload PDFView Record in ScopusGoogle Scholar [22] H. Luo, Q. Cai, B. Wei, B. Yu, D. Li, J. He, Z. Liu Effect of (NaPO3)6 concentrations on corrosion resistance of plasma electrolytic oxidation coatings formed on AZ91D magnesium alloy J. Alloys. Compd., 464 (2008), pp. 537-543, 10.1016/j.jallcom.2007.10.072 ArticleDownload PDFView Record in ScopusGoogle Scholar [23] Y. Mori, A. Koshi, J. Liao, H. Asoh, S. Ono Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate - Silicate mixture electrolytes Corros. Sci., 88 (2014), pp. 254-262, 10.1016/j.corsci.2014.07.038 ArticleDownload PDFView Record in ScopusGoogle Scholar [24] S.V. Lamaka, G. Knörnschild, D.V. Snihirova, M.G. Taryba, M.L. Zheludkevich, M.G.S. Ferreira Complex anticorrosion coating for ZK30 magnesium alloy Electrochim. Acta, 55 (2009), pp. 131-141, 10.1016/j.electacta.2009.08.018 ArticleDownload PDFView Record in ScopusGoogle Scholar [25] M. Mohedano, C. Blawert, M.L. Zheludkevich Cerium-based sealing of PEO coated AM50 magnesium alloy Surf. Coat. Technol., 269 (2015), pp. 145-154, 10.1016/j.surfcoat.2015.01.003 ArticleDownload PDFView Record in ScopusGoogle Scholar [26] D.K. Ivanoua, K.A. Yasakau, S. Kallip, A. Lisenkov, M. Starykevich, S.V. Lamaka, M.G.S. Ferreira, M.L. Zheludkevich Active corrosion protection coating for ZE41 magnesium alloy created by combining PEO and sol-gel techniques RSC Adv., 6 (2016), pp. 12553-12560, 10.1039/C5RA22639B View PDFGoogle Scholar [27] A.S. Gnedenkov, S.L. Sinebryukhov, D.V. Mashtalyar, S.V. Gnedenkov Protective properties of inhibitor-containing composite coatings on a Mg alloy Eval. Program Plann., 102 (2016), pp. 348-354, 10.1016/j.corsci.2015.10.026 ArticleDownload PDFView Record in ScopusGoogle Scholar [28] Y. Chen, X. Lu, S.V. Lamaka, P. Ju, C. Blawert, T. Zhang, F. Wang, M.L. Zheludkevich Active protection of Mg alloy by composite PEO coating loaded with corrosion inhibitors Appl. Surf. Sci., 504 (2019), Article 144462, 10.1016/j.apsusc.2019.144462 View PDFGoogle Scholar [29] J. Yang, C. Blawert, S.V. Lamaka, D. Snihirova, X. Lu, S. Di, M.L. Zheludkevic Corrosion protection properties of inhibitor containing hybrid PEO-epoxy coating on magnesium Corros. Sci., 140 (2018), pp. 99-110, 10.1016/j.corsci.2018.06.014 ArticleDownload PDFView Record in ScopusGoogle Scholar [30] S.V. Lamaka, B. Vaghefinazari, D. Mei, R.P. Petrauskas, D. Höche, M.L. Zheludkevich Comprehensive screening of Mg corrosion inhibitors Corros. Sci., 128 (2017), pp. 224-240, 10.1016/j.corsci.2017.07.011 ArticleDownload PDFView Record in ScopusGoogle Scholar [31] P. Visser, Y. Liu, H. Terryn, J.M.C. Mol Lithium salts as leachable corrosion inhibitors and potential replacement for hexavalent chromium in organic coatings for the protection of aluminum alloys J. Coatings Technol. Res., 13 (2016), pp. 557-566, 10.1007/s11998-016-9784-6 View PDFView Record in ScopusGoogle Scholar [32] A.C. Bouali, A.C. Bastos, S.V. Lamaka, M. Serdechnova, M.G.S. Ferreira, M.L. Zheludkevich Evaporation of electrolyte during SVET measurements: the scale of the problem and the solutions Electroanalysis., 31 (2019), pp. 2290-2298, 10.1002/elan.201900435 View PDFView Record in ScopusGoogle Scholar [33] J. Vogelsang, W. Strunz The evaluation of experimental dielectric data of barrier coatings by means of different models Electrochim. Acta, 46 (2001), pp. 3619-3625, 10.1016/S0013-4686(01)00644-2 View PDFView Record in ScopusGoogle Scholar [34] J.B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet CPE analysis by local electrochemical impedance spectroscopy Electrochim. Acta, 51 (2006), pp. 1473-1479, 10.1016/j.electacta.2005.02.128 ArticleDownload PDFView Record in ScopusGoogle Scholar [35] C.H. Kim, S. Il Pyun, J.H. Kim An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations Electrochim. Acta, 48 (2003), pp. 3455-3463, 10.1016/S0013-4686(03)00464-X ArticleDownload PDFView Record in ScopusGoogle Scholar [36] R.O. Hussein, D.O. Northwood, X. Nie The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys Surf. Coat. Technol., 237 (2013), pp. 357-368, 10.1016/j.surfcoat.2013.09.021 ArticleDownload PDFView Record in ScopusGoogle Scholar [37] V. Dehnavi, B. Li, D.W. Shoesmith, X. Yang, S. Rohani Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior Surf. Coat. Technol., 226 (2013), pp. 100-107, 10.1016/j.surfcoat.2013.03.041 ArticleDownload PDFView Record in ScopusGoogle Scholar [38] Y. Cheng, Z. Xue, Q. Wang, X. Wu, E. Matykina, P. Skeldon, G.E. Thompson Electrochimica Acta New findings on properties of plasma electrolytic oxidation coatings from study of an Al–Cu–Li alloy Electrochim. Acta, 107 (2013), pp. 358-378, 10.1016/j.electacta.2013.06.022 ArticleDownload PDFView Record in ScopusGoogle Scholar [39] X. Ma, C. Blawert, D. Höche, M.L. Zheludkevich, K.U. Kainer Investigation of electrode distance impact on PEO coating formation assisted by simulation Appl. Surf. Sci., 388 (2016), pp. 304-312, 10.1016/j.apsusc.2016.01.030 ArticleDownload PDFView Record in ScopusGoogle Scholar [40] E. Matykina, R. Arrabal, P. Skeldon, G.E. Thompson, P. Belenguer AC PEO of aluminium with porous alumina precursor fi lms Surf. Coat. Technol., 205 (2010), pp. 1668-1678, 10.1016/j.surfcoat.2010.05.014 ArticleDownload PDFView Record in ScopusGoogle Scholar [41] T.W. Clyne, S.C. Troughton A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals oxidation of various metals Int. Mater. Rev., 64 (2019), pp. 127-162, 10.1080/09506608.2018.1466492 View PDFView Record in ScopusGoogle Scholar [42] X. Lu, S. Prasad, N. Scharnagl, M. Störmer, M. Starykevich, M. Mohedano, C. Blawert, M.L. Zheludkevich, K. Ulrich Degradation behavior of PEO coating on AM50 magnesium alloy produced from electrolytes with clay particle addition Surf. Coat. Technol., 269 (2015), pp. 155-169, 10.1016/j.surfcoat.2014.11.027 ArticleDownload PDFView Record in ScopusGoogle Scholar [43] A. Santos-Coquillat, M. Esteban-Lucia, E. Martinez-Campos, M. Mohedano, R. Arrabal PEO coatings design for Mg-Ca alloy for cardiovascular stent and bone regeneration applications Mater. Sci. Eng. C., 105 (2019), Article 110026, 10.1016/j.msec.2019.110026 ArticleDownload PDFView Record in ScopusGoogle Scholar [44] M. Mohedano, B.J.C. Luthringer, B. Mingo, F. Feyerabend, R. Arrabal, P.J. Sanchez-egido, C. Blawert Bioactive plasma electrolytic oxidation coatings on Mg-Ca alloy to control degradation behaviour Surf. Coat. Technol., 315 (2017), pp. 454-467, 10.1016/j.surfcoat.2017.02.050 ArticleDownload PDFView Record in ScopusGoogle Scholar [45] J. Dou, Y. Zhao, L. Lu, G. Gu, H. Yu, C. Chen Effect of the second-step voltages on the structural and corrosion properties of silicon – calcium – phosphate (Si–CaP) coatings on Mg–Zn–Ca alloy R. Soc. Open Sci., 5 (2018), Article 172410, 10.1098/rsos.172410 View PDFView Record in ScopusGoogle Scholar [46] R. Arrabal, E. Matykina, A. Pardo, M.C. Merino, K. Paucar, M. Mohedano, P. Casajús Corrosion behaviour of AZ91D and AM50 magnesium alloys with Nd and Gd additions in humid environments Corros. Sci., 55 (2012), pp. 351-362, 10.1016/j.corsci.2011.10.038 ArticleDownload PDFView Record in ScopusGoogle Scholar [47] S. Agathopoulos, D.U. Tulyaganov, J.M.G. Ventura, S. Kannan, A. Saranti, M.A. Karakassides, J.M.F. Ferreira Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives J. Non. Solids, 352 (2006), pp. 322-328, 10.1016/j.jnoncrysol.2005.12.003 ArticleDownload PDFView Record in ScopusGoogle Scholar [48] S. Peng, M. Li, J. Wang, Q. Tian, S. Wang, B. Tang Corrosion behavior and biological activity of micro-arc oxidation coating with puerarin on pure magnesium surface Results Phys, 12 (2019), pp. 1481-1489, 10.1016/j.rinp.2019.01.021 ArticleDownload PDFView Record in ScopusGoogle Scholar
dspace.entity.typePublication
relation.isAuthorOfPublication160ef5bd-2d04-4f6c-b028-cb7ce4cf8d38
relation.isAuthorOfPublication6a953ac5-3b84-40fc-a995-2a00ac938151
relation.isAuthorOfPublication427b12dd-40e9-49e6-a8fe-d41e79a056ff
relation.isAuthorOfPublication.latestForDiscovery160ef5bd-2d04-4f6c-b028-cb7ce4cf8d38

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0010938X20324707-main.pdf
Size:
14.51 MB
Format:
Adobe Portable Document Format

Collections