Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On l 1 subspaces of Orlicz vector-valued function spaces.

Loading...
Thumbnail Image

Full text at PDC

Publication date

1987

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge Univ Press
Citations
Google Scholar

Citation

Abstract

The author studies those Orlicz vector-valued function spaces that contain a copy or a complemented copy of l 1 . Precisely, given a finite complete measure space (S,Σ,μ) , a Young function Φ , and a Banach space E , let L Φ (S,Σ,μ,E) denote the vector space of all (classes of) strongly measurable functions f from S to E such that ∫Φ(k∥f∥)dμ<∞ for some k>0 , and let L Φ (μ)=L Φ (S,Σ,μ,R) . The author first extends a result of G. Pisier concerning vector-valued L p function spaces by showing that if l 1 embeds in L Φ (S,Σ,μ,E) , then l 1 embeds either in L Φ (μ) or in E . This result, combined with a result of E. Saab and the reviewer concerning the embedding of l 1 as a complemented subspace of the Banach space of all E -valued continuous functions on a compact Hausdorff space, is used to show that if in addition E is a Banach lattice, if Φ satisfies the Δ 2 -condition and if μ is nonpurely atomic, then L Φ (S,Ω,μ,E) contains a complemented copy of l 1 if and only if either L Φ (μ) or E contains a complemented copy of l 1

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections