Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Riemann–Hilbert problems, matrix orthogonal polynomials and discrete matrix equations with singularity confinement

Loading...
Thumbnail Image

Full text at PDC

Publication date

2012

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-Blackwell
Citations
Google Scholar

Citation

Abstract

n this paper, matrix orthogonal polynomials in the real line are described in terms of a RiemannHilbert problem. This approach provides an easy derivation of discrete equations for the corresponding matrix recursion coefficients. The discrete equation is explicitly derived in the matrix Freud case, associated with matrix quartic potentials. It is shown that, when the initial condition and the measure are simultaneously triangularizable, this matrix discrete equation possesses the singularity confinement property, independently if the solution under consideration is given by the recursion coefficients to quartic Freud matrix orthogonal polynomials or not.

Research Projects

Organizational Units

Journal Issue

Description

Wiley-Blackwell. The authors thanks economical support from the Spanish Ministerio de Ciencia e Innovación, research project FIS2008-00200. GAC acknowledges the support of the grant Universidad Complutense de Madrid. Finally, MM reckons illuminating discussions with Dr. Mattia Cafasso in relation with orthogonality and singularity confinement, and both authors are grateful to Prof. Gabriel Álvarez Galindo for several discussions and for the experimental confirmation, via Mathematica, of the existence of the confinement of singularities in the 2 × 2 case.

Unesco subjects

Keywords

Collections