Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A model of quantum-von Neumann hybrid cellular automata: principles and simulation of quantum coherent superposition and decoherence in cytoskeletal microtubules

dc.contributor.authorLahoz Beltrá, Rafael
dc.contributor.authorFonseca, Manuel
dc.contributor.authorCruz, Marina de la
dc.contributor.authorOrtega, Alfonso
dc.contributor.authorHameroff, Stuart R.
dc.date.accessioned2023-06-19T15:12:48Z
dc.date.available2023-06-19T15:12:48Z
dc.date.issued2015
dc.description.abstractAlthough experimental evidence suggests the influence of quantum effects in living organisms, one of the most critical problems in quantum biology is the explanation of how those effects that take place in a microscopic level can manifest in the macroscopic world of living beings. At present, quantum decoherence associated with the wave function collapse is one of the most accepted mechanisms explaining how the classical world of living beings emerges from the quantum world. Whatever the cause of wave function collapse, there exist biological systems where a biological function arises as a result of this collapse (e.g. birds navigation, plants photosynthesis, sense of smell, etc.), as well as the opposite examples (e.g. release of energy from ATP molecules at actomyosin muscle) where a biological function takes place in a quantum coherent environment. In this paper we report the modelling and simulation of quantum coherent superposition in cytoskeletal microtubules including decoherence, thus the effect of the collapse of the microtubule coherent state wave function. Our model is based on a new class of hybrid cellular automata (QvN), capable of performing as either a quantum cellular automata (QCA) or as a classical von Neumann automata (CA). These automata are able to simulate the transition or reduction from a quantum microscopic level with superposition of several quantum states, to a macroscopic level with a single stable state. Our results illustrate the significance of quantum biology explaining the emergence of some biological functions. We believe that in the future quantum biology will have a deep effect on the design of new devices, e.g. quantum hardware, in electrical engineering.
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/45845
dc.identifier.issn1533-7146
dc.identifier.officialurlhttp://www.rintonpress.com/journals/qic/index.html
dc.identifier.urihttps://hdl.handle.net/20.500.14352/35552
dc.issue.number1 y 2
dc.journal.titleQuantum Information and Computation
dc.language.isoeng
dc.page.final36
dc.page.initial22
dc.publisherRinton Press
dc.rights.accessRightsrestricted access
dc.subject.cdu51:57
dc.subject.keywordQuantum Biology
dc.subject.keywordhybrid cellular automata
dc.subject.keywordwave-function collapse
dc.subject.keywordemergence biological functions
dc.subject.keywordcoherence-decoherence modeling
dc.subject.keywordcytoskeletal microtubules
dc.subject.keywordhuman consciousness
dc.subject.ucmBiología
dc.subject.ucmBiomatemáticas
dc.subject.unesco24 Ciencias de la Vida
dc.subject.unesco2404 Biomatemáticas
dc.titleA model of quantum-von Neumann hybrid cellular automata: principles and simulation of quantum coherent superposition and decoherence in cytoskeletal microtubules
dc.typejournal article
dc.volume.number15
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lahoz. 2015. A model of quantum von neumann hybrid cellular automata.pdf
Size:
2.06 MB
Format:
Adobe Portable Document Format

Collections