Classification of Lagrangians for surface design.

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Pergamon-Elsevier Science Ltd
Google Scholar
Research Projects
Organizational Units
Journal Issue
Second-order Lagrangians depending on a surface which are parameter-invariant and also invariant under rigid motions of Euclidean 3-space are classified.
D. Terzopoulos and H. Qin, Dynamic NURBS with geometric constraints for interactive sculpting, ACM Trans. Graphics 13, 103-136 (1993). M.I.G. Bloor, M.J. Wilson and H. Hagen, The smoothing properties of variational schemes for surface design,Comput. Aided Geom. Design 12, 381-394 (1995). G.E. Fasshauer and L.L. Schumaker, Minimal energy surfaces using parametric splines, Comput. Aided Geom. Design 13, 45-79 (1996). G. Greiner, Blending techniques based on variational principles, In Curves and Surfaces in Computer IAision and Graphics III, (Edited by J.D. Warren), pp. 174-183, Proc.SPIE 1830, (1992). G. Greiner, Surface construction based on variational principles, In Wavelets, Images, and Surface Fitting,(Edited by P.J. Laurent, A. LeM6haut6 and L.L. Schumaker),pp. 277-286, AKPeters, Wellesley, MA,(1994). R.F. Sarraga, Recent methods for surface shape optimization, Comput. Aided Geom. Design 15, 417-436 (1998). W. Welch and A. Witkin, Variational surface modeling,Comput. Graphics 26, 157-166 (1992). M.I.G. Bloor and M.J. Wilson, Using partial differential equations to generate free-form surfaces, Comput.Aided Design 22, 202-212 (1990). M.I.G. Bloor and M.J. Wilson, Representing PDE surfaces in terms of B-splines, Comput. Aided Design 22,324 331 (1990). 10. R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt and P.A. Griffiths, Exterior Differential Systems,Springer-Verlag, New York, (1991).