Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Incoherent spatial impulse response in variable-cross-section photoreceptors and frequency-domain analysis

dc.contributor.authorLakshminarayanan, Vasudevan
dc.contributor.authorCalvo Padilla, María Luisa
dc.date.accessioned2023-06-20T19:00:03Z
dc.date.available2023-06-20T19:00:03Z
dc.date.issued1995-10
dc.description© 1995 Optical Society of America.
dc.description.abstractThe spatial impulse response of a single variable-cross-section photoreceptor has been characterized assuming the incoming radiation to be an initial field propagating under confinement conditions inside the receptor. By application of Fourier analysis the total transfer function is determined. Both the outer and the inner segments are characterized as low-pass filters. The dependence of the transfer function on the modal parameter is analyzed.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25753
dc.identifier.doi10.1364/JOSAA.12.002339
dc.identifier.issn0740-3232
dc.identifier.officialurlhttp://dx.doi.org/10.1364/JOSAA.12.002339
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59081
dc.issue.number10
dc.journal.titleJournal of the Optical Society of America A-Optics Image Science And Vision
dc.language.isoeng
dc.page.final2347
dc.page.initial2339
dc.publisherOptical Society of America
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordOptical Wave-Guides
dc.subject.keywordInitial Field
dc.subject.keywordEnergy Flux
dc.subject.keywordConsequences
dc.subject.keywordFormalism
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleIncoherent spatial impulse response in variable-cross-section photoreceptors and frequency-domain analysis
dc.typejournal article
dc.volume.number12
dcterms.references1. J. M. Enoch, “Visualization of waveguide modes in retinal receptors”, Am. J. Ophthalmol. 51, 1107–1118 (1961). 2. For a general recent review of the Stiles–Crawford effect and modal patterns in photoreceptors, see J. M. Enoch, V. Lakshminarayanan, “Retinal fiber optics”, in Visual Optics and Instrumentation, Vol. 1 of Vision and Visual Dysfunction, W. N. Charman, ed. (Macmillan, London, 1991), pp. 280–310. A waveguide model of the Stiles–Crawford effect is given by A. Snyder, C. Pask, “The Stiles–Crawford effect: explanation and consequences”, Vision Res. 13, 1115–1137 (1973). 3. J. M. Enoch, F. L. Tobey, eds., Vertebrate Photoreceptor Optics (Springer-Verlag, Berlin, 1981), and references therein. 4. C. Pask, K. F. Barrell, “Photoreceptor optics. I. Introduction to formalism and excitation in a lens–photoreceptor system”, Biol. Cybern. 36, 1–8 (1980). 5. R. F. Alverez-Estrada, M. L. Calvo, “Neutron fibres: a possible application of neutron optics”, J. Phys. D 17, 475–502 (1984). 6. M. L. Calvo, V. Lakshminarayanan, “Initial field and energy flux in absorbing optical waveguides. I. Theoretical formalism”, J. Opt. Soc. Am. A 4, 1037–1042 (1987). 7. V. Lakshminarayanan, M. L. Calvo, “Initial field and energy flux in absorbing optical waveguides. II. Implications”, J. Opt. Soc. Am. A 4, 2133–2140 (1987). 8. M. L. Calvo, V. Lakshminarayanan, “An analysis of the modal field in absorbing optical waveguides and some useful approximations”, J. Phys. D 22, 603–610 (1989). 9. J. W. Goodman, “Linear space-variant optical data processing”, in Optical Information Processing Fundamentals, Vol. 48 of Topics in Applied Physics, S. H. Lee, ed. (Springer-Verlag, Berlin, 1981), Chap. 6. 10. M. L. Calvo, “Linear behavior in the aperture pupil of single photoreceptors: consequences related to the degree of inhomogeneity”, Biol. Cybern. 54, 201–210 (1986). 11. M. L. Calvo, “Some physical features on the mechanism of vision and photoreceptors”, in Laser and Ultrafast Phenomena, A. Piskarskas, ed. (Vilnius U. Press, Vilnius, Lithuania, 1991), Vol. 4, pp. 167–174. 12. R. L. De Valois, K. K. De Valois, Spatial Vision, Vol. 14 of Oxford Psychology Series (Oxford U. Press, New York, 1988), Chap. 6. 13. A. Stacey, C. Pask, “Spatial-frequency response of a photoreceptor and its wavelength dependence. I. Coherent sources”, J. Opt. Soc. Am. A 11, 1193–1198 (1994). 14. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, 7th ed. (Dover, New York, 1968), p. 364. 15. A. W. Lohman, D. P. Paris, “Space-variant image formation”, J. Opt. Soc. Am. 55, 1007–1013 (1965). 16. B. R. Horowitz, “Theoretical considerations of the retinal receptors as a waveguide”, in Vertebrate Photoreceptor Optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, Berlin, 1981), pp. 219–294. 17. R. L. Sidman, “The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy”, J. Biophys. Biochem. Cytol. 3, 15–30 (1957). 18. M. L. Calvo, P. K. Mondal, “Effects induced on the transverse spatial impulse response of an inhomogeneous photoreceptor with a nonsymmetric refractive index profile and arbitrarily located origin”, Nuovo Cimento 9D, 261–273 (1987). 19. R. N. Bracewell, The Fourier Transform and Its Applications, (McGraw-Hill, New York, 1978), p. 422. 20. B. Borwein, D. Borwein, J. Medeiros, J. McGowan, “The ultra structure of monkey foveal photoreceptors, with special reference to the structure, shape, size and spacing of the foveal cones”, Am. J. Anat. 159, 125–146 (1980). 21. A. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983), p. 227.
dspace.entity.typePublication
relation.isAuthorOfPublicatione2846481-608d-43dd-a835-d70f73a4dd48
relation.isAuthorOfPublication.latestForDiscoverye2846481-608d-43dd-a835-d70f73a4dd48

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CalvoML84.pdf
Size:
454.1 KB
Format:
Adobe Portable Document Format

Collections