Incoherent spatial impulse response in variable-cross-section photoreceptors and frequency-domain analysis
dc.contributor.author | Lakshminarayanan, Vasudevan | |
dc.contributor.author | Calvo Padilla, María Luisa | |
dc.date.accessioned | 2023-06-20T19:00:03Z | |
dc.date.available | 2023-06-20T19:00:03Z | |
dc.date.issued | 1995-10 | |
dc.description | © 1995 Optical Society of America. | |
dc.description.abstract | The spatial impulse response of a single variable-cross-section photoreceptor has been characterized assuming the incoming radiation to be an initial field propagating under confinement conditions inside the receptor. By application of Fourier analysis the total transfer function is determined. Both the outer and the inner segments are characterized as low-pass filters. The dependence of the transfer function on the modal parameter is analyzed. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/25753 | |
dc.identifier.doi | 10.1364/JOSAA.12.002339 | |
dc.identifier.issn | 0740-3232 | |
dc.identifier.officialurl | http://dx.doi.org/10.1364/JOSAA.12.002339 | |
dc.identifier.relatedurl | http://www.opticsinfobase.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59081 | |
dc.issue.number | 10 | |
dc.journal.title | Journal of the Optical Society of America A-Optics Image Science And Vision | |
dc.language.iso | eng | |
dc.page.final | 2347 | |
dc.page.initial | 2339 | |
dc.publisher | Optical Society of America | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Optical Wave-Guides | |
dc.subject.keyword | Initial Field | |
dc.subject.keyword | Energy Flux | |
dc.subject.keyword | Consequences | |
dc.subject.keyword | Formalism | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Incoherent spatial impulse response in variable-cross-section photoreceptors and frequency-domain analysis | |
dc.type | journal article | |
dc.volume.number | 12 | |
dcterms.references | 1. J. M. Enoch, “Visualization of waveguide modes in retinal receptors”, Am. J. Ophthalmol. 51, 1107–1118 (1961). 2. For a general recent review of the Stiles–Crawford effect and modal patterns in photoreceptors, see J. M. Enoch, V. Lakshminarayanan, “Retinal fiber optics”, in Visual Optics and Instrumentation, Vol. 1 of Vision and Visual Dysfunction, W. N. Charman, ed. (Macmillan, London, 1991), pp. 280–310. A waveguide model of the Stiles–Crawford effect is given by A. Snyder, C. Pask, “The Stiles–Crawford effect: explanation and consequences”, Vision Res. 13, 1115–1137 (1973). 3. J. M. Enoch, F. L. Tobey, eds., Vertebrate Photoreceptor Optics (Springer-Verlag, Berlin, 1981), and references therein. 4. C. Pask, K. F. Barrell, “Photoreceptor optics. I. Introduction to formalism and excitation in a lens–photoreceptor system”, Biol. Cybern. 36, 1–8 (1980). 5. R. F. Alverez-Estrada, M. L. Calvo, “Neutron fibres: a possible application of neutron optics”, J. Phys. D 17, 475–502 (1984). 6. M. L. Calvo, V. Lakshminarayanan, “Initial field and energy flux in absorbing optical waveguides. I. Theoretical formalism”, J. Opt. Soc. Am. A 4, 1037–1042 (1987). 7. V. Lakshminarayanan, M. L. Calvo, “Initial field and energy flux in absorbing optical waveguides. II. Implications”, J. Opt. Soc. Am. A 4, 2133–2140 (1987). 8. M. L. Calvo, V. Lakshminarayanan, “An analysis of the modal field in absorbing optical waveguides and some useful approximations”, J. Phys. D 22, 603–610 (1989). 9. J. W. Goodman, “Linear space-variant optical data processing”, in Optical Information Processing Fundamentals, Vol. 48 of Topics in Applied Physics, S. H. Lee, ed. (Springer-Verlag, Berlin, 1981), Chap. 6. 10. M. L. Calvo, “Linear behavior in the aperture pupil of single photoreceptors: consequences related to the degree of inhomogeneity”, Biol. Cybern. 54, 201–210 (1986). 11. M. L. Calvo, “Some physical features on the mechanism of vision and photoreceptors”, in Laser and Ultrafast Phenomena, A. Piskarskas, ed. (Vilnius U. Press, Vilnius, Lithuania, 1991), Vol. 4, pp. 167–174. 12. R. L. De Valois, K. K. De Valois, Spatial Vision, Vol. 14 of Oxford Psychology Series (Oxford U. Press, New York, 1988), Chap. 6. 13. A. Stacey, C. Pask, “Spatial-frequency response of a photoreceptor and its wavelength dependence. I. Coherent sources”, J. Opt. Soc. Am. A 11, 1193–1198 (1994). 14. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, 7th ed. (Dover, New York, 1968), p. 364. 15. A. W. Lohman, D. P. Paris, “Space-variant image formation”, J. Opt. Soc. Am. 55, 1007–1013 (1965). 16. B. R. Horowitz, “Theoretical considerations of the retinal receptors as a waveguide”, in Vertebrate Photoreceptor Optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, Berlin, 1981), pp. 219–294. 17. R. L. Sidman, “The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy”, J. Biophys. Biochem. Cytol. 3, 15–30 (1957). 18. M. L. Calvo, P. K. Mondal, “Effects induced on the transverse spatial impulse response of an inhomogeneous photoreceptor with a nonsymmetric refractive index profile and arbitrarily located origin”, Nuovo Cimento 9D, 261–273 (1987). 19. R. N. Bracewell, The Fourier Transform and Its Applications, (McGraw-Hill, New York, 1978), p. 422. 20. B. Borwein, D. Borwein, J. Medeiros, J. McGowan, “The ultra structure of monkey foveal photoreceptors, with special reference to the structure, shape, size and spacing of the foveal cones”, Am. J. Anat. 159, 125–146 (1980). 21. A. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983), p. 227. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e2846481-608d-43dd-a835-d70f73a4dd48 | |
relation.isAuthorOfPublication.latestForDiscovery | e2846481-608d-43dd-a835-d70f73a4dd48 |
Download
Original bundle
1 - 1 of 1