Causes of the recent decline of a Lesser Kestrel (Falco naumanni) population under an enhanced conservation scenario
Loading...
Download
Official URL
Full text at PDC
Publication date
2023
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
John Wiley & Sons Ltd
Citation
Aparicio, J. M., Muñoz, A., Cordero, P. J., & Bonal, R. (2023). Causes of the recent decline of a Lesser Kestrel (Falco naumanni) population under an enhanced conservation scenario. Ibis, 165(2), 388-402. https://doi.org/10.1111/IBI.13145
Abstract
Lesser Kestrel Falco naumanni (Fleischer, 1818) populations have been one of the best monitored bird populations in Spain over the last 70 years. These populations suffered a sharp decline between the 1950s and 1990s. Since then, periodic censuses showed a population increase that lasted until the 2010s. In those years, numerous projects for the recovery of the species were also initiated (some EU LIFE Projects, among others), which have continued to the present day. However, despite conservation efforts, the Spanish Lesser Kestrel population, which includes about 40% of the European breeding population, has declined at a rate of 6% per year since 2012. In this study, we analysed changes in habitat and population size in 12 colonies located in La Mancha between 2003 and 2021 in order to identify possible causes of the current decline. This colonial species breeds in old buildings, and roof area (a proxy for house size) was the predictor that best accounted for the number of pairs in a colony in a given year. In addition, the extent of herbaceous crops (related to prey availability) explained a similar amount of colony size variance in 2021, whereas in 2003, the availability of large Orthoptera itself had a significant effect but a much lower effect size. The number of nestboxes affected positively the number of breeding pairs in 2021 but explained only 1% of the variance. The decline of the Lesser Kestrel population between 2003 and 2021 was largely explained by the decrease of the density of large orthopterans, their main prey. The model with the minimum Akaike Information criterion adjusted for small sample size (AICc) value also included a positive association with changes in roof area and a negative association with rabbit density (possibly through a hyperpredation phenomenon). Other top models (i.e. ΔAICc ≤ 2 units) also showed negative effects of the loss of favourable land uses (pasture lands and herbaceous crops) on colony size, probably because this caused a reduction in the availability of large Orthoptera. These changes in land use occurred less often in areas protected by the Natura 2000 network, which may thus have contributed to the conservation of the Lesser Kestrel population. However, other conservation measures such as the installation of nestboxes were not as efficient as expected.
Description
Referencias bibliográficas:
• Aparicio, J.M. & Bonal, R. 2002. Effects of food supplementation and habitat selection on timing of lesser kestrel breeding. Ecology 83: 873–877.
• Aparicio, J.M. & Cordero, P.J. 2018. Mirones, Primillas en busca de información. https://www.youtube.com/watch?v=L0qE-26XLhI&t=83s [Accessed 21 March 2022].
• Aparicio, J.M., Bonal, R. & Muñoz, A. 2007. Experimental test on public information use in the colonial lesser kestrel. Evol. Ecol. 21: 783–800.
• Assandri, G., Cecere, J.G., Sarà, M., Catoni, C., De Pascalis, F., Morinay, J., Berlusconi, A., Cioccarelli, S., Mercogliano, A., Pazhera, A., Terras, A., Imperio, S., Morganti, M. & Rubolini, D. 2022. Context-dependent foraging habitat selection in a farmland raptor along an agricultural intensification gradient. Agric. Ecosyst. Environ 326: 107782.
• Atienza, J.C. & Tella, J.L. 2003. Cernícalo primilla Falco naumanni. In Martí, R. & del Moral, J. C. (eds) Atlas de las Aves Reproductoras de España: 196–197. Madrid: Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología.
• Azen, R., Budescu, D.V. & Reiser, B. 2001. Criticality of predictors in multiple regression. Br. J. Math. Stat. Psychol. 54: 201–225.
• Barrio, I.C., Villafuerte, R. & Tortosa, F.S. 2011. Harbouring pests: Rabbit warrens in agricultural landscapes. Wildl. Res. 38: 756–761.
• Biber, J.-P. 1996. International action plan for the lesser kestrel (Falco naumanni). In Heredia, B., Rose, L. & Painter, M. (eds) Globally threatened birds in Europe: action plans: (pp. 191–203). Strasbourg: Council of Europe & BirdLife International.
• Bijlsma, S., Hagemeijer, E., Verkley, G. & Zollinger, R. 1988. Ecological Aspects of the Lesser Kestrel (Falco naumanni) in Extremadura (Spain). Rapp: 285. Nijmegen: Kathol. Univ.
• BirdLife International. 2018. Falco naumanni. IUCN red List treatened species. e.T2269635.
• Bonal, R. & Aparicio, J.M. 2008. Evidence of prey depletion around lesser kestrel Falco naumanni colonies and its short term negative consequences. J. Avian Biol. 39: 189–197.
• Buchan, C., Gilroy, J.J., Catry, I., Bustamante, J., Marca, A.D., Atkinson, P.W., González, J.M. & Franco, A.M.A. 2021. Carryover effects of long-distance avian migration are weaker than effects of breeding environment in a partially migratory bird. Sci. Rep. 11: 935.
• Burnham, K.P. & Anderson, D.R. 2002. Model Selection and Multi- Model Inference: A Practical Information-Theoretic Approach. New York: Springer.
• Bustamante, J. 1997. Predictive models for lesser kestrel Falco naumanni distribution, abundance and extinction in southern Spain. Biol. Conserv. 80: 153–160.
• Bustamante, J., Molina, B. & del Moral, J.C. 2020. El cernícalo primilla en España, población reproductora en 2016–2018 y método de censo. Madrid: SEO/BirdLife.
• Calabuig, G., Ortego, J., Cordero, P.J. & Aparicio, J.M. 2007. El expolio de teja vieja amenaza la supervivencia del cernícalo primilla en la España rural. Quercus 252: 14–17.
• Calabuig, G., Ortego, J., Aparicio, J.M. & Cordero, P.J. 2008. Public information in selection of nesting colony by lesser kestrels: Which cues are used and when are they obtained? Anim. Behav. 75: 1611–1617.
• Calabuig, G., Ortego, J., Cordero, P.J. & Aparicio, J.M. 2010. Colony foundation in the lesser kestrel: Patterns and consequences of the occupation of empty habitat patches. Anim. Behav. 80: 975–982.
• Campobello, D., Sarà, M. & Hare, J.F. 2012. Under my wing: Lesser kestrels and jackdaws derive reciprocal benefits in mixed-species colonies. Behav. Ecol. 23: 425–433.
• Campobello, D., Hare, J.F. & Sarà, M. 2015. Social phenotype extended to communities: Expanded multilevel social selection analysis reveals fitness consequences of interspecific interactions. Evolution 69: 916–925.
• Catry, I., Alcazar, R. & Henriques, I. 2007. The role of nest-site provisioning in increasing lesser kestrel Falco naumanni numbers in Castro Verde special protection area, southern Portugal. Conserv. Evid. 4: 54–57.
• Catry, I., Alcazar, R., Franco, A.M.A. & Sutherland, W.J. 2009. Identifying the effectiveness and constraints of conservation interventions: A case study of the endangered lesser kestrel. Biol. Conserv. 142: 2782–2791.
• Catry, I., Amano, T., Franco, A.M.A. & Sutherland, W.J. 2012. Influence of spatial and temporal dynamics of agricultural practices on the lesser kestrel. J. Appl. Ecol. 49: 99–108.
• Catry, I., Franco, A.M.A. & Moreira, F. 2014. Easy but ephemeral food: Exploring the trade-offs of agricultural practices in the foraging decisions of lesser kestrels on farmland. Bird Study 61: 447–456.
• Cherkaoui, I., Bouajaja, A. & Hanane, S. 2013. Evidence of increasing lesser kestrel Falco naumanni populations in Morocco (North Africa): A confirmation of least concern conservation status. Bird Study 60: 423–427.
• Christakis, C.E. & Sfougaris, A.I. 2021. Foraging habitat selection by the lesser kestrel Falco naumanni during the different phases of breeding and the post breeding period in Central Greece. Ornithol. Sci. 20: 175–183.
• Courchamp, F., Langlais, M. & Sugihara, G. 2000. Rabbits killing birds: Modelling the hyperpredation process. J. Anim. Ecol. 69: 154–164.
• Cramp, S. & Simmons, K.E.L. 1980. The Birds of the Western Palearctic. Vol. II. Oxford: Oxford University Press.
• Deforest, D.K., Brix, K.V., Tear, L.M., Cardwell, A.S., Stubblefield, W.A., Nordheim, E. & Adams, W.J. 2020. Updated multiple linear regression models for predicting chronic aluminum toxicity to freshwater aquatic organisms and developing water quality guidelines. Environ. Toxicol. Chem. 39: 1724–1736.
• Di Maggio, R., Campobello, D., Tavecchia, G. & Sarà, M. 2016. Habitat- and density-dependent demography of a colonial raptor in Mediterranean agro-ecosystems. Biol. Conserv. 193: 116–123.
• Di Maggio, R., Campobello, D. & Sarà, M. 2018. Lesser kestrel diet and agricultural intensification in the Mediterranean: An unexpected win-win solution? J. Nat. Conserv. 45: 122–130.
• Donázar, J.A., Negro, J.J. & Hiraldo, F. 1993. Foraging habitat selection, land-use changes and population decline in the lesser kestrel Falco naumanni. J. Appl. Ecol. 30: 515.
• Forero, M.G., Tella, J.L., Donfizar, J.A. & Hiraldo, F. 1996. Can interspecific competition and nest site availability explain the decrease of lesser kestrel Falco naumanni populations? Biol. Conserv. 78: 293.
• Franco, A.M.A. & Sutherland, W.J. 2004. Modelling the foraging habitat selection of lesser kestrels: Conservation implications of European Agricultural Policies. Biol. Conserv. 120: 63–74.
• Franco, A.M.A., Catry, I., Sutherland, W.J. & Palmeirim, J.M. 2004. Do different habitat preference survey methods produce the same conservation recommendations for lesser kestrels? Anim. Conserv. 7: 291–300.
• Franco, A.M.A., Marques, J.T. & Sutherland, W.J. 2005. Is nest-site availability limiting Lesser Kestrel populations? A multiple scale approach. Ibis 147: 657–666.
• de Frutos, Á., Olea, P.P., Mateo-Tomás, P. & Purroy, F.J. 2010. The role of fallow in habitat use by the lesser kestrel during the post-fledging period: Inferring potential conservation implications from the abolition of obligatory set-aside. Eur. J. Wildl. Res. 56: 503–511.
• Gameiro, J., Franco, A.M.A., Catry, T., Palmeirim, J.M. & Catry, I. 2020. Long-term persistence of conservation-reliant species: Challenges and opportunities. Biol. Conserv. 243: 108452.
• Gameiro, J., Catry, T., Marcelino, J., Franco, A.M.A., Palmeirim, J.M. & Catry, I. 2022. High trophic niche overlap in mixed-species colonies using artificial nests. Ibis 164: 1073–1085.
• González, J. & Merino, M. 1990. El cernícalo primilla (Falco naumanni) en la Península Ibérica. Situación, problemática y aspectos biológicos. Madrid: Serie Técnica. ICONA. Ministerio de Agricultura, Pesca y Alimenta ción.
• Goutner, V., Bakaloudis, D.E., Papakosta, M.A., Vlachos, C.G., Mattig, F.R., Pijanowska, U. & Becker, P.H. 2015. Organochlorine and mercury residues in eggs of the lesser kestrel (Falco naumanni) from a long term study in the eastern Mediterranean. Environ. Pollut. 207: 196–204.
• Gustin, M., Giglio, G., Pellegrino, S.C., Frassanito, A. & Ferrarini, A. 2017. Space use and flight attributes of breeding lesser kestrels Falco naumanni revealed by GPS tracking. Bird Study 64: 274–277.
• Hernández, J.L., Ortego, J., Calabuig, G., Bonal, R., Muñoz, A., García, P., Gonzalo Cordero, P.J. & Aparicio, J.M. 2007. Casi dos décadas anillando primillas en La Mancha. Anu. Ornitológico Ciudad Real 2004–2005: 165–170.
• Iñigo, A. & Barov, B. 2010. Species Action Plan for the Lesser Kestrel (Falco naumanni) in the European Union: 55. SEO BirdLife Int. Eur. Com. Available from: http://ec.europa.eu/environment/nature/conservation/wildbirds/action_plan/docs/falco_naumanni.pdf [Accessed 22 February 2022].
• Latchininsky, A.V. 1998. Moroccan locust Dociostaurus maroccanus (Thunberg, 1815): A faunistic rarity or an important economic pest? J. Insect Conserv. 2: 167–178.
• Liu, Y., Zumbo, B.D. & Wu, A.D. 2014. Relative importance of predictors in multilevel modeling. J. Mod. Appl. Stat. Methods 13: 2–22.
• Morganti, M., Ambrosini, R. & Sarà, M. 2019. Different trends of neighboring populations of lesser kestrel: Effects of climate and other environmental conditions. Popul. Ecol. 61: 300–314.
• Negro, J.J. & Hiraldo, F. 1993. Nest-site selection and breeding success in the lesser kestrel Falco naumanni. Bird Study 40: 115–119.
• Negro, J.J., Donázar, J.A., Hiraldo, F., Hernández, L.M. & Fernández, M.A. 1993. Organochlorine and heavy metal contamination in non-viable eggs and its relation to breeding success in a Spanish population of lesser kestrels (Falco naumanni). Environ. Pollut. 82: 201–205.
• Negro, J.J., Prenda, J., Jos Ferrero, J., Rodríguez, A. & Reig-Ferrer, A. 2020. A timeline for the urbanization of wild birds: The case of the lesser kestrel. Quat. Sci. Rev. 249: 106638.
• Nessel, M.P., Konnovitch, T., Romero, G.Q. & Gonz Alez, A.L. 2021. Nitrogen and phosphorus enrichment cause declines in invertebrate populations: A global meta-analysis. Biol. Rev. 96: 2617–2637.
• O'Brien, R.M. 2007. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41: 673–690.
• Onsager, J.A. & Henry, J.E. 1977. A method for estimating the density of rangeland grasshoppers (orthoptera, Acrididae) in experimental plots. Acrida 6: 231–237.
• Ortego, J., Aparicio, J.M., Calabuig, G. & Cordero, P.J. 2007a. Increase of heterozygosity in a growing population of lesser kestrels. Biol. Lett. 3: 585–588.
• Ortego, J., Aparicio, J.M., Muñoz, A. & Bonal, R. 2007b. Malathion applied at standard rates reduces fledgling condition and adult male survival in a wild lesser kestrel population. Anim. Conserv. 10: 312–319.
• Palma, L., Beja, P. & Rodrigues, M. 1999. The use of sighting data to analyse Iberian lynx habitat and distribution. J. Appl. Ecol. 36: 812–824.
• Parr, S.J., Naveso, N. & Yarar, M. 1997. Habitat and potential prey surrounding lesser kestrel Falco naumanni colonies in Central Turkey. Biol. Conserv. 79: 309–312.
• Perez González, M.E. & Sanz Donaire, J.J. 1998. Clima y microclima de la Mancha Húmeda. An. Geogr. la Univ. Complut. 18: 239–256.
• Pilard, P. 2009. Plan National d'Actions du Faucon crécerellette en France 2010–2014. Ministère de l'Ecologie, du Développement durable, des Transports et du Logement.
• Pomarol, M. 1996. Artificial nest structure design and management implications for the lesser kestrel (Falco naumanni). J. Raptor Res. 30: 169–172.
• Pratt, J.W. 1987. Dividing the indivisible: Using simple symmetry to partition variance explained. In Pukkila, T. & Putanen, S. (eds) Proceedings of the Second International Conference in Statistics: 245–260. Tampere: University of Tampere.
• Rhoades, W.C. 1963. The history and use of agricultural chemicals. Florida Entomol. 46: 275–277.
• Rodríguez, C. & Bustamante, J. 2003. The effect of weather on lesser kestrel breeding success: Can climate change explain historical population declines? J. Anim. Ecol. 72: 793–810.
• Rodríguez, C. & Bustamante, J. 2008. Patterns of orthoptera abundance and lesser kestrel conservation in arable landscapes. Biodivers. Conserv. 17: 1753–1764.
• Rodríguez, C., Johst, K. & Bustamante, J. 2006. How do crop types influence breeding success in lesser kestrels through prey quality and availability? A modelling approach. J. Appl. Ecol. 43: 587–597.
• Sarà, M. 2010. Climate and land-use changes as determinants of lesser kestrel Falco naumanni abundance in Mediterranean cereal steppes (Sicily). Ardeola 57: 3–22.
• Smith, A.P. & Quin, D.G. 1996. Patterns and causes of extinction and decline in Australian conilurine rodents. Biol. Conserv. 77: 243–267.
• Taylor, R.H. 1979. How the macquarie Island parakeet became extinct. New Zeal. Ecol. Soc. 2: 42–45.
• Tella, J.L., Forero, M.G., Hiraldo, F. & Donázar, J.A. 1998. Conflicts between lesser kestrel conservation and European agricultural policies as identified by habitat use analyses. Conserv. Biol. 12: 593–604.
• Tella, J.L., Carrete, M., Sánchez-Zapata, J.A., Serrano, D., Gavrilov, A., Sklyarenko, S., Ceballos, O., Donázar, J.A. & Hiraldo, F. 2004. Effects of land use, nesting-site availability, and the presence of larger raptors on the abundance of vulnerable lesser kestrels Falco naumanni in Kazakhstan. Oryx 38: 224–227.
• Thomas, D.R., Hughes, E. & Zumbo, B.D. 1998. On variable importance in linear regression. Soc. Indic. Res. 45: 253–275.
• Thomas, D.R., Kwan, E. & Zumbo, B.D. 2018. In defense of Pratt's variable importance axioms: A response to Gromping. Wiley Interdiscip. Rev. Comput. Stat. 10: 1–10.
• Tsiopelas, N. 2021. Population Status and Conservation Actions in Favour of Lesser Kestrel in Greece: 36–39. VIII International Congress on the conservation of the Lesser Kestrel.
• Ursúa, E., Serrano, D. & Tella, J.L. 2005. Does land irrigation actually reduce foraging habitat for breeding lesser kestrels? The role of crop types. Biol. Conserv. 122: 643–648.
• Vergara, P., Fargallo, J.A., Banda, E., Parejo, D., Lemus, J.A. & García-Montijano, M. 2007. Low frequency of anti-acetylcholinesterase pesticide poisoning in lesser and Eurasian kestrels of Spanish grassland and farmland populations. Biol. Conserv. 141: 499–505.
• Virgós, E., Cabezas-Díaz, S., Malo, A., Lozano, J. & López-Huertas, D. 2003. Factors shaping European rabbit abundance in continuous and fragmented populations of Central Spain. Acta Theriol. (Warsz). 48: 113–122.
• Vlachos, C.G., Bakaloudis, D.E., Kitikidou, K., Goutner, V., Bontzorlos, V., Papakosta, M.A. & Chatzinikos, E. 2014. Home range and foraging habitat selection by breeding lesser kestrels (Falco naumanni) in Greece. J. Nat. Hist. 49: 371–381.
• Wang, X., Duverger, P. & Bansal, H.S. 2013. Bayesian inference of predictors relative importance in linear regression model using dominance hierarchies. Int. J. Pure Appl. Math. 88: 321–339.
• Zhang, J., Fan, M. & Kuang, Y. 2006. Rabbits killing birds revisited. Math. Biosci. 203: 100–123.