The Hereditary Dunford-Pettis Property On C(K,E)

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
University of Illinois
Google Scholar
Research Projects
Organizational Units
Journal Issue
The author studies the hereditary Dunford-Pettis property for spaces CX(K) of continuous Xvalued functions (X a Banach space) on a compact Hausdorff space K. First, she shows that CX(K) has the hereditary Dunford-Pettis property if and only if one of the following holds: (a) K is finite andX has the hereditary Dunford-Pettis property; (b) C(K) and c0(X) have the hereditary Dunford-Pettis property. Unwilling to give up here, the author provides an elegant characterization of when c0(X) has the hereditary Dunford-Pettis property. Since the paper was written, Nunez has provided an elegant example (based on work of Talagrand) of an X such that, while X is hereditarily Dunford-Pettis, c0(X) is not. Remarkable and satisfying!
Unesco subjects
l.C. Bessaga and A. Pelczynski, On bases and unconditional convergence of series in Banach spaces,Studia Math. 17 (1958),151-164 2. P. C. Curtis, Jr., A note concerning certain product spaces, Arch. Math. 11 (1960),50-52. 3. J. Diestel and J. J. Uhl, Vector measures, Math. Surveys,no.15,Amer.Math.Soc,Providence,R.I.,1977. 4. S. S. Khurana, Grothendieck spaces,Illinois J.Math.22 (1978),79-80. 5. J. Lindenstrauss and L. Tzafriri,Classical Banach spaces. I, Sequence spaces,vol.92,6. A.Nissen Springer-Verlag, Berlin and New York,1977.zweign, w*-sequential convergence, Israel J. Math. 22(1975),266-272. 7. A. Pelczynski, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sei. Sér. Sei. Math. Astronom. Phys.10 (1962),641-648. 8. E. Saab and P. Saab, A stability property of a class of Banach spaces not containing a complemented copy ofh, Proc. Amer. Math. Soc. 84 (1982),44-46. 9. A. Sobczyk, Projections of the space (m) on its subspace (co), Bull. Amer. Math. Soc. 47 (1941),938-947.