Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Robust median estimator in logistic regression

dc.contributor.authorHobza, Pavel
dc.contributor.authorPardo Llorente, Leandro
dc.contributor.authorVajda, Igor
dc.date.accessioned2023-06-20T09:43:19Z
dc.date.available2023-06-20T09:43:19Z
dc.date.issued2008-12-01
dc.description.abstractThis paper introduces a median estimator of the logistic regression parameters. It is defined as the classical L-1-estimator applied to continuous data Z(1),..., Z(n) obtained by a statistical smoothing of the original binary logistic regression observations Y-1,..., Y-n. Consistency and asymptotic normality of this estimator are proved. A method called enhancement is introduced which in some cases increases the efficiency of this estimator. Sensitivity to contaminations and leverage points is studied by simulations and compared in this manner with the sensitivity of some robust estimators previously introduced to the logistic regression. The new estimator appears to be more robust for larger sample sizes and higher levels of contamination.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17513
dc.identifier.doi10.1016/j.jspi.2008.02.010
dc.identifier.issn0378-3758
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0378375808001407
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50246
dc.issue.number12
dc.journal.titleJournal of Statistical Planning and Inference
dc.language.isoeng
dc.page.final3840
dc.page.initial3822
dc.publisherElsevier Science Bv
dc.relation.projectIDMTM 2006-06872
dc.relation.projectIDMSMT 1M 0572
dc.relation.projectIDMPO FI-IM3/136
dc.rights.accessRightsrestricted access
dc.subject.cdu519.233.5
dc.subject.keywordlogistic regression
dc.subject.keywordMLE
dc.subject.keywordMorgenthaler estimator
dc.subject.keywordBianco and Yohai estimator
dc.subject.keywordCroux and Haselbroeck estimator
dc.subject.keywordmedian estimator
dc.subject.keywordconsistency
dc.subject.keywordasymptotic normality
dc.subject.keywordrobustness
dc.subject.keywordGeneralized linear-models
dc.subject.keywordNonlinear-regression
dc.subject.keywordFits
dc.subject.ucmEstadística aplicada
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleRobust median estimator in logistic regression
dc.typejournal article
dc.volume.number138
dcterms.referencesAdimari, G., Ventura, L., 2001. Robust inference for generalized linear models with application to logistic regression. Statist. Probab. Lett. 55 (4), 413--419. Agresti, A., 2002. Categorical Data Analysis. second ed. Wiley, New York. Andersen, E.B., 1990. The Statistical Analysis of Categorical data. Springer, New York. Arcones, M.A., 2001. Asymptotic distribution of regression M-estimators. J. Statist. Plann. Inference 97, 235--261. Bianco, A.M., Yohai, V.J., 1996. Robust estimation in the logistic regression model. In: Robust Statistics, Data Analysis, and Computer Intensive Methods (Schloss Thurnau, 1994). Lecture Notes in Statistics, vol. 109, Springer, New York, pp. 17--34. Chen, X.R., Zhao, L., Wu, Y., 1993. On conditions of consistency of ML1N estimates. Statist. Sinica 3, 9--18. Croux, C., Haesbroeck, G., 2003. Implementing the Bianco and Yohai estimator for logistic regression. Comput. Statist. Data Anal. 44, 273--295. Dennis Jr., J.E., Schnabel, R.B., 1983. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ. Gervini, D., 2005. Robust adaptive estimators for binary regression models. J. Statist. Plann. Inference 131, 297--311. Hampel, F.R., Rousseeuw, P.J., Ronchetti, E.M., Stahel, W.A., 1986. Robust Statistics: The Approach Based on Influence Functions. Wiley, New York. Hobza, T., Pardo, L., Vajda, I., 2005. Median estimators in generalized logistic regression. Research Report DAR-UTIA 2005/40, Institute of Information Theory, Prague (available at http://dar.site.cas.cz/?publication = 1007). Hobza, T., Pardo, L., Vajda, I., 2006. Robust median estimators in logistic regression. Research Report DAR-UTIA 2006/31, Institute of Information Theory, Prague (available at http://dar.site.cas.cz/?publication = 1089). Jurečková, J., Proch´azka, B., 1994. Regression quantiles and trimmed least squares estimator in nonlinear regression model. Nonparametric Statist. 3, 201--222. Jurečková, J., Sen, P.K., 1996. Robust Statistical Procedures. Wiley, New York. Knight, K., 1998. Limiting distributions for L1 regression estimators under general conditions. Ann. Statist. 26, 755--770. Koenker, R., Basset, G., 1978. Regression quantiles. Econometrica 46, 33--50. Kordzakhia, N., Mishra, G.D., ReiersZlmoen, L., 2001. Robust estimation in the logistic regression model. J. Statist. Plann. Inference 98, 211--223. Liese, F., Vajda, I., 1999. M-estimators of structural parameters in pseudolinear models. Appl. Math. 44, 245--270. Liese, F., Vajda, I., 2003. A general asymptotic theory of M-estimators I. Math. Methods Statist. 12, 454--477. Liese, F., Vajda, I., 2004. A general asymptotic theory of M-estimators II. Math. Methods Statist. 13, 82--95. Maronna, R.A., Martin, R.D., Yohai, V.J., 2006. Robust Statistics. Theory and Methods. Wiley, New York. Mood, A.M., Graybill, F.A., Boes, D.C., 1974. Introduction to the Theory of Statistics. McGraw-Hill, New York. Moré, J., Burton, G., Kenneth, H., 1980. User Guide for MINPACK-1. Argonne National Laboratory Report ANL-80-74, Argonne, Illinois. Morgenthaler, S., 1992. Least-absolute-deviations fits for generalized linear models. Biometrika 79, 747--754. Pardo, J.A., Pardo, L., Pardo, M.C., 2006. Testing in logistic regression models based on -divergences measures. J. Statist. Plann. Inference 136, 982--1006. Pollard, D., 1991. Asymptotics for least absolute deviation regression estimators. Econometric Theory 7, 186--199. Pregibon, D., 1982. Resistant fits for some commonly used logistic models with medical applications. Biometrics 38, 485--498. Richardson, G.D., Bhattacharyya, B.B., 1987. Consistent L1-estimates in nonlinear regression for a noncompact parameter space. Sankhya Ser. A 49, 377--387. Rousseeuw, P.J., Christmann, A., 2003. Robustness against separation and outliers in logistic regression. Comput. Statist. Data Anal. 43, 315--332. Yohai, V.J., 1987. High breakdown point high efficiency robust estimates for regression. Ann. Statist. 15, 642--656. Zwanzig, S., 1997. On L1-norm Estimators in Nonlinear Regression and in Nonlinear Error-in-Variables Models. IMS Lecture Notes, vol. 31, Hayward, pp. 101--118.
dspace.entity.typePublication
relation.isAuthorOfPublicationa6409cba-03ce-4c3b-af08-e673b7b2bf58
relation.isAuthorOfPublication.latestForDiscoverya6409cba-03ce-4c3b-af08-e673b7b2bf58

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PardoLeandro11.pdf
Size:
329.14 KB
Format:
Adobe Portable Document Format

Collections