Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deep multi-shot network for modelling appearance similarity in multi-person tracking applications

dc.contributor.authorGómez Silva, María José
dc.date.accessioned2025-01-23T09:02:32Z
dc.date.available2025-01-23T09:02:32Z
dc.date.issued2021
dc.description"“This version of the article has been accepted for publication, after peer review but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:https://doi.org/10.1007/S11042-020-10256-2"
dc.description.abstractThe automatization of Multi-Object Tracking becomes a demanding task in real unconstrained scenarios, where the algorithms have to deal with crowds, crossing people, occlusions, disappearances and the presence of visually similar individuals. In those circumstances, the data association between the incoming detections and their corresponding identities could miss some tracks or produce identity switches. In order to reduce these tracking errors, and even their propagation in further frames, this article presents a Deep Multi-Shot neural model for measuring the Degree of Appearance Similarity (MS-DoAS) between person observations. This model provides temporal consistency to the individuals’ appearance representation, and provides an affinity metric to perform frame-by-frame data association, allowing online tracking. The model has been deliberately trained to be able to manage the presence of previous identity switches and missed observations in the handled tracks. With that purpose, a novel data generation tool has been designed to create training tracklets that simulate such situations. The model has demonstrated a high capacity to discern whether a new observation corresponds to a certain track or not, achieving a classification accuracy of 97% in a hard test that simulates tracks with previous mistakes. Moreover, the tracking efficiency of the model in a Surveillance application has been demonstrated by integrating that into the frame-by-frame association of a Tracking-by-Detection algorithm.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComisión Interministerial de Ciencia y Tecnología, CICYT (España)
dc.description.sponsorshipUniversidad Carlos III de Madrid
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.citationGómez-Silva, M.J. Deep multi-shot network for modelling appearance similarity in multi-person tracking applications. Multimed Tools Appl 80, 23701–23721 (2021). https://doi.org/10.1007/s11042-020-10256-2
dc.identifier.doi10.1007/s11042-020-10256-2
dc.identifier.essn1573-7721
dc.identifier.issn1380-7501
dc.identifier.officialurlhttps://doi.org/10.1007/s11042-020-10256-2
dc.identifier.relatedurlhttps://arxiv.org/pdf/2004.03531
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s11042-020-10256-2
dc.identifier.urihttps://hdl.handle.net/20.500.14352/115731
dc.journal.titleMultimedia Tools and Applications
dc.language.isoeng
dc.page.final23721
dc.page.initial23701
dc.publisherSpringer Nature
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//TRA2016-78886-C3-1-R /ES/ INTEGRACIÓN DE SISTEMAS COOPERATIVOS PARA VEHÍCULOS AUTÓNOMOS EN TRÁFICO COMPARTIDO: ANÁLISIS DEL ENTORNO DE CONDUCCIÓN/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096036-B-C21/ES/INTEGRACION DE VEHICULOS AUTONOMOS ELECTRICOS EN ENTORNOS URBANOS/
dc.relation.projectIDPEAVAUTO-CM-UC3M
dc.relation.projectIDinfo:eu-repo/grantAgreement/CAM//P2018%2FEMT-4362
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.cdu519.7
dc.subject.keywordDeep neural network
dc.subject.keywordAppearance similarity
dc.subject.keywordMulti-shot recognition
dc.subject.keywordMulti-object tracking
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleDeep multi-shot network for modelling appearance similarity in multi-person tracking applications
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number80
dspace.entity.typePublication
relation.isAuthorOfPublication779a7137-78a8-46a7-81e0-58b8bd5f1748
relation.isAuthorOfPublication.latestForDiscovery779a7137-78a8-46a7-81e0-58b8bd5f1748

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deep multi-shot_accepted.pdf
Size:
4.44 MB
Format:
Adobe Portable Document Format

Collections