Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Concatenating Variational Principles and the Kinetic Stress-Energy-Momentum Tensor

dc.book.titleVariations, Geometry and Physics
dc.contributor.authorCastrillón López, Marco
dc.contributor.authorGotay, Mark J.
dc.contributor.authorMarsden, Jerrold E.
dc.contributor.editorKrupkova, Olga
dc.contributor.editorSaunders , David
dc.date.accessioned2023-06-20T13:39:34Z
dc.date.available2023-06-20T13:39:34Z
dc.date.issued2009
dc.description.abstractWe show how to \concatenate" variational principles over different bases into one over a single base, thereby providing a unifed Lagrangian treatment of interacting systems. As an example we study a Klein Gordon feld interacting with a mesically charged particle. We employ our method to give a novel group-theoretic derivation of the kinetic stress-energy-momentum tensor density corresponding to the particle.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21914
dc.identifier.isbn978-1-60456-920-9
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53257
dc.language.isoeng
dc.page.final128
dc.page.initial117
dc.page.total370
dc.publication.placeNew York
dc.publisherNova Science Publisher
dc.rights.accessRightsopen access
dc.subject.cdu515.16
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleConcatenating Variational Principles and the Kinetic Stress-Energy-Momentum Tensor
dc.typebook part
dcterms.referencesAnderson, J. L. [1967], Principles of Relativity Physics. Academic Press, New York. Castrillón López, M., M. J. Gotay, and J. E. Marsden [2008], Parametrization and stress-energy-momentum tensors in metric theories (to appear). Gotay, M. J., J. A. Isenberg, J. E. Marsden, and R. Montgomery [1998], Momentum maps and classical felds, I: Covariant feld theory, arXiv: physics/9801019. Gotay, M. J., J. A. Isenberg, and J. E. Marsden [2004], Momentum maps and classical felds, II: Canonical analysis of feld theories, arXiv: mathph/0411032. Gotay, M. J. and J. E. Marsden [1992], Stress-energy-momentum tensors and the Belinfante{Rosenfeld formula, Contemp. Math. 132, 367-391. Gotay, M. J. and J. E. Marsden [2008], Parametrization theory, in preparation. Green, M. B., J. H. Schwarz, and E. Witten [1987], Superstring Theory, Volume I: Introduction. Cambridge Univ. Press, Cambridge. Kunzinger, M., G. Rein, R. Steinbauer, and G. Teschl [2005], On classical solutions of the relativistic Vlasov-Klein-Gordon system, Electronic J. Differential Equations, no. 1, 17 pp. Landau, L. D. and E. M. Lifshitz [1979], The Classical Theory of Fields. Fourth revised English ed., Permagon Press, Aberdeen. Leclerc, M. [2006], Canonical and gravitational stress-energy tensors, arXiv: gr-qc/0510044. Minkowski, H. [1908], Die Grundgleichungen ffur die elektromagnetischen Vorgfange in bewegten Kforpern, Nach. Ges. Wiss. Gfottingen, 53-111. Rein, G. [1990], Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Comm. Math. Phys. 135, 41-78.
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
castrillon-concatenating.pdf
Size:
228.59 KB
Format:
Adobe Portable Document Format