Concatenating Variational Principles and the Kinetic Stress-Energy-Momentum Tensor
dc.book.title | Variations, Geometry and Physics | |
dc.contributor.author | Castrillón López, Marco | |
dc.contributor.author | Gotay, Mark J. | |
dc.contributor.author | Marsden, Jerrold E. | |
dc.contributor.editor | Krupkova, Olga | |
dc.contributor.editor | Saunders , David | |
dc.date.accessioned | 2023-06-20T13:39:34Z | |
dc.date.available | 2023-06-20T13:39:34Z | |
dc.date.issued | 2009 | |
dc.description.abstract | We show how to \concatenate" variational principles over different bases into one over a single base, thereby providing a unifed Lagrangian treatment of interacting systems. As an example we study a Klein Gordon feld interacting with a mesically charged particle. We employ our method to give a novel group-theoretic derivation of the kinetic stress-energy-momentum tensor density corresponding to the particle. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21914 | |
dc.identifier.isbn | 978-1-60456-920-9 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/53257 | |
dc.language.iso | eng | |
dc.page.final | 128 | |
dc.page.initial | 117 | |
dc.page.total | 370 | |
dc.publication.place | New York | |
dc.publisher | Nova Science Publisher | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 515.16 | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Concatenating Variational Principles and the Kinetic Stress-Energy-Momentum Tensor | |
dc.type | book part | |
dcterms.references | Anderson, J. L. [1967], Principles of Relativity Physics. Academic Press, New York. Castrillón López, M., M. J. Gotay, and J. E. Marsden [2008], Parametrization and stress-energy-momentum tensors in metric theories (to appear). Gotay, M. J., J. A. Isenberg, J. E. Marsden, and R. Montgomery [1998], Momentum maps and classical felds, I: Covariant feld theory, arXiv: physics/9801019. Gotay, M. J., J. A. Isenberg, and J. E. Marsden [2004], Momentum maps and classical felds, II: Canonical analysis of feld theories, arXiv: mathph/0411032. Gotay, M. J. and J. E. Marsden [1992], Stress-energy-momentum tensors and the Belinfante{Rosenfeld formula, Contemp. Math. 132, 367-391. Gotay, M. J. and J. E. Marsden [2008], Parametrization theory, in preparation. Green, M. B., J. H. Schwarz, and E. Witten [1987], Superstring Theory, Volume I: Introduction. Cambridge Univ. Press, Cambridge. Kunzinger, M., G. Rein, R. Steinbauer, and G. Teschl [2005], On classical solutions of the relativistic Vlasov-Klein-Gordon system, Electronic J. Differential Equations, no. 1, 17 pp. Landau, L. D. and E. M. Lifshitz [1979], The Classical Theory of Fields. Fourth revised English ed., Permagon Press, Aberdeen. Leclerc, M. [2006], Canonical and gravitational stress-energy tensors, arXiv: gr-qc/0510044. Minkowski, H. [1908], Die Grundgleichungen ffur die elektromagnetischen Vorgfange in bewegten Kforpern, Nach. Ges. Wiss. Gfottingen, 53-111. Rein, G. [1990], Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Comm. Math. Phys. 135, 41-78. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 32e59067-ef83-4ca6-8435-cd0721eb706b | |
relation.isAuthorOfPublication.latestForDiscovery | 32e59067-ef83-4ca6-8435-cd0721eb706b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- castrillon-concatenating.pdf
- Size:
- 228.59 KB
- Format:
- Adobe Portable Document Format