Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Cauchy problem for ut = Δu(m) when 0<m<1

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorPierre, Michel
dc.date.accessioned2023-06-21T02:03:14Z
dc.date.available2023-06-21T02:03:14Z
dc.date.issued1985-09
dc.description.abstractThis paper deals with the Cauchy problem for the nonlinear diffusion equation ∂u/∂t - Δ (u|u|m+1) = 0 on (0, ∞) x RN,u(0, .) = u0 when 0 < m < 1 (fast diffusion case). We prove that there exists a global time solution for any locally integrable function u0: hence, no growth condition at infinity for u0 is required. Moreover the solution is shown to be unique in that class. Behavior at infinity of the solution and L∞loc-regularizing effects are also examined when m Є (max{(N-2)/N, 0}, 1).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17623
dc.identifier.doi10.2307/1999900
dc.identifier.issn0002-9947
dc.identifier.officialurlhttp://www.ams.org/journals/tran/1985-291-01/S0002-9947-1985-0797051-0/S0002-9947-1985-0797051-0.pdf
dc.identifier.relatedurlhttp://www.ams.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64723
dc.issue.number1
dc.journal.titleTransactions of the American Mathematical Society
dc.language.isoeng
dc.page.final158
dc.page.initial145
dc.publisherAmerican Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu517.955
dc.subject.cdu517.9
dc.subject.keywordCauchy problem
dc.subject.keywordnonlinear diffusion
dc.subject.keywordinitial-value problem
dc.subject.keywordregularizing effects.
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleThe Cauchy problem for ut = Δu(m) when 0<m<1
dc.typejournal article
dc.volume.number291
dcterms.referencesD. G. Aronson and Ph. Bénilan, Régularité des solutions de I'équation des milieux poreux dans RN, C. R. Acad. Sci. Paris Sér. A 288 (1979), 103-105. D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc. 280 (1983), 351-366. P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble) 34 (1984), 185-206. P. Baras, Problèmes paraboliques semi-linéaires avec donnés mesures, Applicable Anal. 18 (1984), 111-149. G. I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium, Prikl. Mat. Mekh. 16 (1952), 67-78. (Russian) Ph. Bénilan and M. G. Crandall, Regularizing effects of homogeneous evolution equations, Contributions to Analysis and Geometry (D. N. Clark et al., eds.), John Hopkins Univ. Press, Baltimore, Md., 1981, pp. 23-30. H. Brezis, Semilinear equations in RN without conditions at infinity (to appear). Ph. Bénilan, M. G. Crandall and M. Pierre, Solutions of the porous medium equation in RN under optimal conditions on initial values, Indiana Univ. Math. J. 33 (1984), 51-87. H. Brezis and M. G. Crandall, Uniqueness of solutions of the initial value problem for ut - Δφ(u)= 0, J. Math. Pures Appl. 56 (1979), 153-163. B. J. Dahlberg and C. E. Kenig, Non-negative solutions of the porous medium equation, Comm. Partial Differential Equations 9 (1984), 409-438. E. Di Benedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J. 32 (1983), 83-118. A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N.J., 1964. T. Kato, Schrödinger operators with singular potentials, Israel J. Math. 13 (1972), 135-148. O. A. Oleinik, A. S. Kalashnikov and C. Yu Lin, The Cauchy problem and boundary problems for equations of the type of unsteady filtration, Izv. Akad. Nauk SSR Ser. Mat. 22 (1958), 667-704. L. A. Peletier, The porous medium equation, Application of Non-linear Analysis in the Physical Sciences (H. Amann et al., eds.), Pitman, London, 1981, pp. 229-241. P. Sacks, Continuity of solutions of degenerate parabolic equations, Thesis, Univ. of Wisconsin, Madison, 1981. J. L. Vazquez, Behaviour of the velocity of one dimensional flows in porous media, Trans. Amer. Math. Soc. 286 (1984), 787-802. L. Veron, Effets régularisants de semi-groupes non-linéaires dans des espaces de Banach, Ann. Fac. Sci. Toulouse Math. (5) 1 (1979), 171-200. N. A. Watson, The rate of spatial decay of non-negative solutions of linear parabolic equations, Arch. Rational Mech. Anal. 68 (1978), 121-125.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero61.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format

Collections