Methodology for analyzing educational forums with NLP: searching for economic terms

dc.book.titleTeaching innovations in economics: Towards a sustainable world
dc.contributor.authorGalán Hernández, José Javier
dc.contributor.authorMarín Díaz, Gabriel
dc.contributor.authorMariscal Vivas, Gonzalo
dc.contributor.editorValls Martínez, María del Carmen
dc.contributor.editorMontero Martínez, José María
dc.date.accessioned2026-01-13T12:38:35Z
dc.date.available2026-01-13T12:38:35Z
dc.date.issued2024-11-01
dc.description.abstractThis chapter studies the programming languages and libraries suitable for presenting a methodology for analyzing forums in the economics subject using natural language processing (NLP) techniques, concluding to use spaCy and transformers in Python. The methodology follows a structure based on CRISP-DM, including project planning and the selection of appropriate tools and technologies. The proposed methodology performs the following actions: Relevant data sources are identified and accessed, collecting data from forum posts, such as text, dates, and authors. Text preprocessing involves noise removal, tokenization, and lemmatization using spaCy, ensuring clean and manageable data. Content analysis begins with calculating the frequency of key terms, followed by topic modeling with techniques like LDA to identify the main discussion topics. Sentiment analysis is performed with transformers models to evaluate the tone of the posts. The results are communicated through visualizations such as word clouds and bar charts, providing a clear understanding of the data. The results are documented in detailed reports that describe the methods used and the interpretations of the findings. Lastly, the results are analyzed and discussed in relation to the initial objectives of the project, offering conclusions and recommendations for future actions or additional studies.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipSIN FINANCIACIÓN
dc.description.statuspub
dc.identifier.citationGalán Hernández, J.J., Marín Díaz, G., Mariscal, G. (2024). Methodology for analyzing educational forums with NLP: searching for economic terms. In: Valls Martínez, M.d.C., Montero, J. (eds) Teaching Innovations in Economics. Springer, Cham. https://doi.org/10.1007/978-3-031-72549-4_4
dc.identifier.doi10.1007/978-3-031-72549-4
dc.identifier.isbn978-3-031-72549-4
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-031-72549-4
dc.identifier.relatedurlhttps://link.springer.com/book/10.1007/978-3-031-72549-4
dc.identifier.urihttps://hdl.handle.net/20.500.14352/130055
dc.language.isoeng
dc.page.final97
dc.page.initial77
dc.page.total580
dc.publication.placeCham, Switzerland (sede editorial de LNNS)
dc.publisherSpringer Nature Switzerland AG
dc.rights.accessRightsrestricted access
dc.subject.cdu004.85
dc.subject.cdu519.22-7
dc.subject.cdu007.5
dc.subject.cdu519.8
dc.subject.keywordNatural language processing (NLP)
dc.subject.keywordMachine learning
dc.subject.keywordEducational data mining
dc.subject.keywordEconomic education
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmEstadística aplicada
dc.subject.ucmTecnología de la información (Ciencias de la Información)
dc.subject.ucmInvestigación operativa (Estadística)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco5801.07 Métodos Pedagógicos
dc.subject.unesco1105.01 Método Científico
dc.titleMethodology for analyzing educational forums with NLP: searching for economic terms
dc.typebook part
dc.type.hasVersionAM
dc.volume.number1
dspace.entity.typePublication
relation.isAuthorOfPublicationf11206d7-9926-4f84-a47e-776cd56cea85
relation.isAuthorOfPublicationdbf934cd-7a5b-4052-a128-5c68bf7d8b7e
relation.isAuthorOfPublication.latestForDiscoveryf11206d7-9926-4f84-a47e-776cd56cea85

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Methodology for analyzing.pdf
Size:
459.78 KB
Format:
Adobe Portable Document Format