Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Equivariant vector bundles and logarithmic connections on toric varieties

Loading...
Thumbnail Image

Full text at PDC

Publication date

2013

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Academic Press
Citations
Google Scholar

Citation

Abstract

Let X be a smooth complete complex toric variety such that the boundary is a simple normal crossing divisor, and let E be a holomorphic vector bundle on X. We prove that the following three statements are equivalent: The holomorphic vector bundle E admits an equivariant structure. The holomorphic vector bundle E admits an integrable logarithmic connection singular over D. The holomorphic vector bundle E admits a logarithmic connection singular over D. We show that an equivariant vector bundle on X has a tautological integrable logarithmic connection singular over D. This is used in computing the Chern classes of the equivariant vector bundles on X. We also prove a version of the above result for holomorphic vector bundles on log parallelizable G-pairs (X, D), where G is a simply connected complex affine algebraic group

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections