Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Midgap traps related to compensation processes in CdTe alloys

dc.contributor.authorCastaldini, A.
dc.contributor.authorCavallini, A.
dc.contributor.authorFraboni, B.
dc.contributor.authorFernández Sánchez, Paloma
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.date.accessioned2023-06-20T19:02:18Z
dc.date.available2023-06-20T19:02:18Z
dc.date.issued1997-12-15
dc.description© 1997 The American Physical Society. This research was partially supported by the Cooperation Programme ‘‘Azione Integrata’’ between Italy and Spain and by DGICYT (Project No. PB 93-1256). The authors are indebted to Japan Energy Corporation for the undoped and Cl-doped samples.
dc.description.abstractWe study, by cathodoluminescence and junction spectroscopy methods, the deep traps located near midgap in semiconducting and semi-insulating II-VI compounds, namely, undoped CdTe, CdTe:Cl, and Cd0.8Zn0.2Te. In order to understand the role such deep levels play in the control of the electrical properties of the material, it appears necessary to determine their character, donor, or acceptor, in addition to their activation energy and capture cross section. Photoinduced-current transient spectroscopy and photo deep-level transient spectroscopy are used to investigate the semi-insulating (SI) samples, and a comparison of the complementary results obtained allows us to identify an acceptor trap, labeled H, and an electron trap, labeled E. Level H is common to all investigated compounds, while E is present only in CdTe:Cl samples. This provides clear experimental evidence of the presence of a deep trap in CdTe:Cl, which could be a good candidate for the deep donor level needed to explain the compensation process of SI CdTe:Cl.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26382
dc.identifier.doi10.1103/PhysRevB.56.14897
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.56.14897
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59148
dc.issue.number23
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.page.final14900
dc.page.initial14897
dc.publisherAmerican Physical Society
dc.relation.projectIDPB 93-1256
dc.relation.projectIDAzione Integrata
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordCurrent Transient Spectroscopy
dc.subject.keywordDeep Centers
dc.subject.keywordDefects
dc.subject.keywordDetectors
dc.subject.keywordCrystals
dc.subject.keywordCathodoluminescence
dc.subject.keywordCd1-Xznxte
dc.subject.ucmFísica de materiales
dc.titleMidgap traps related to compensation processes in CdTe alloys
dc.typejournal article
dc.volume.number56
dcterms.references1. J. W. Allen, Semicond. Sci. Technol. 10, 1049 (19959. 2. D. M. Hofmann, D. Omling, H. G. Grimmeiss, B. K. Meyer, K. W. Benz, and D. Sinerius, Phys. Rev. B 45, 6247 (1992). 3. W. Stadler, D. M. Hoffman, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, Phys. Rev. B 51, 10 619 (1995). 4. A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, Appl. Phys. Lett. 69, 3507 (1996). 5. N. V. Agrinskaya and E. N. Arkadeva, Nucl. Instrum. Methods Phys. Res. A 283, 260 (1989). 6. E. Rzepka, Y. Marfaing, M. Cuniot, and R. Triboulet, Mater. Sci. Eng. 16, 262 (1993). 7. M. Tapiero, N. Benjelloun, J. P. Zielinger, S. El Hamd, and C. Noguet J. Appl. Phys. 64, 4006 (1988). 8. O. Yoshie and M. Kamihara, Jpn. J. Appl. Phys. 22, 621 (1983). 9. P. M. Mooney, J. Appl. Phys. 54, 208 (1983). 10. A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernández, and J. Piqueras, in Electrically-Based Microstructural Characterization, edited by R. A. Gerhardt, S. R. Taylor, and E. J. Garboczi, MRS Symposia Proceedings No. 411 (Materials Re-search Society, Pittsburgh, 1996), p. 177. 11. P. Blood and J. W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic, London, 1992), Chap. 9, pp. 478–492 and Chap. 7, pp. 336–380. 12. C.-P. Ye and J. Chen, J. Appl. Phys. 67, 2457 (1990). 13. M. Fiederle, D. Ebling, C. Eiche, D. M. Hofmann, M. Salk, W. Stadler, K. W. Benz, and B. K. Meyer, J. Cryst. Growth 138, 529 (1994). 14. M. Hage-Ali and P. Siffert, Nucl. Instrum. Methods Phys. Res. A 322, 313 (1992). 15. T. Takebe, J. Saraie, and H. Matsunami, J. Appl. Phys. 53, 457 (1982). 16. A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernandez, and J. Piqueras, Phys. Rev. B 54, 7622 (1996). 17. Z. Huang, E. Eissler, and C. Wie, Nucl. Instrum. Methods Phys. Res. B 100, 507 (1995). 18. U. Pal, P. Fernandez, J. Piqueras, N. V. Suchinski, and E. Dieguez, J. Appl. Phys. 78, 1992 (1995). 19. P. Moravec, M. Hage-Ali, L. Chibani, and P. Siffert, Mater. Sci. Eng. 16, 223 (1993). 20. P. Höschl, P. Moravec, J. Franc, E. Belas, and R. Grill, Nucl. Instrum. Methods Phys. Res. A 322, 371 (1992). 21. D. M. Hofmann, W. Stadler, K. Oettinger, B. K. Meyer, P. Omling, M. Salk, K. W. Benz, E. Weigel, and G. Müller-Vogt, Mater. Sci. Eng. 16, 128 (1993).
dspace.entity.typePublication
relation.isAuthorOfPublicationdaf4b879-c4a8-4121-aaff-e6ba47195545
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscoverydaf4b879-c4a8-4121-aaff-e6ba47195545

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ203libre.pdf
Size:
59.13 KB
Format:
Adobe Portable Document Format

Collections