Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A parallel space saving algorithm for frequent items and the Hurwitz zeta distribution

dc.contributor.authorCafaro, Massimo
dc.contributor.authorPulimeno, Marco
dc.contributor.authorTempesta, Piergiulio
dc.date.accessioned2023-06-18T05:43:20Z
dc.date.available2023-06-18T05:43:20Z
dc.date.issued2016-02-01
dc.descriptionWe are indebted to the unknown referees for enlightening observations, which helped us to improve the paper. The authors would also like to thank G. Cormode and M. Hadjieleftheriou for making freely available their sequential implementation of the Space Saving algorithm. We are also grateful to Prof. Palpanas of Paris Descartes University for providing us with the real datasets used in the experiments. The research of M. Cafaro has been supported by CMCC, Italy, under the grant FISR Gemina project, Italian Ministry of Education, University and Research. The research of P. Tempesta has been supported by the grant FIS2011–22566, Ministerio de Ciencia e Innovaci´on, Spain.
dc.description.abstractWe present a message-passing based parallel version of the Space Saving algorithm designed to solve the k-majority problem. The algorithm determines in parallel frequent items, i.e., those whose frequency is greater than a given threshold, and is therefore useful for iceberg queries and many other different contexts. We apply our algorithm to the detection of frequent items in both real and synthetic datasets whose probability distribution functions are a Hurwitz and a Zipf distribution respectively. Also, we compare its parallel performances and accuracy against a parallel algorithm recently proposed for merging summaries derived by the Space Saving or Frequent algorithms.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipCMCC, Italy, under the grant FISR Gemina project
dc.description.sponsorshipItalian Ministry of Education, University and Research
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/41497
dc.identifier.doi10.1016/j.ins.2015.09.003
dc.identifier.issn0020-0255
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.ins.2015.09.003
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.relatedurlhttp://arxiv.org/abs/1401.0702
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23153
dc.issue.number17SI
dc.journal.titleInformation sciences
dc.language.isoeng
dc.page.final19
dc.page.initial1
dc.publisherElsevier Science Inc
dc.relation.projectIDFIS2011-22566
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordFinding frequent
dc.subject.keywordElements
dc.subject.keywordStreams
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleA parallel space saving algorithm for frequent items and the Hurwitz zeta distribution
dc.typejournal article
dc.volume.number329
dspace.entity.typePublication
relation.isAuthorOfPublication46e9a666-a5cf-44c3-8726-7cbe2c61bd1a
relation.isAuthorOfPublication.latestForDiscovery46e9a666-a5cf-44c3-8726-7cbe2c61bd1a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tempesta21preprint.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format

Collections