Interpretability and the measurement of ethical foundations in artificial intelligence

dc.conference.date17–19 Sep. 2025
dc.conference.placeLisboa
dc.conference.title22nd International Conference, ETHICOMP 2025, Proceedings
dc.contributor.authorHoughton Torralba, Miguel
dc.contributor.authorShu, Ziwei
dc.contributor.authorCarrasco González, Ramón Alberto
dc.contributor.authorBlasco López, María Francisca
dc.contributor.editorIsabel Alvarez
dc.contributor.editorArias Oliva, Mario
dc.contributor.editorAdrian-Horia Dediu
dc.contributor.editorNuno Silva
dc.date.accessioned2026-01-27T12:06:30Z
dc.date.available2026-01-27T12:06:30Z
dc.date.issued2026
dc.description.abstractWith the rapid development of Artificial Intelligence (AI), its integration into decision-making processes across various sectors is accelerating. The demand for interpretability and ethical accountability has become more urgent than ever. This work explores the critical intersection of these two domains. It begins by examining the concept of interpretability in AI, then turns to the ethical foundations of AI. This work also examines how these intertwined concepts of interpretability and ethics are pivotal in advancing corporate social responsibility (CSR) by fostering transparency, enabling responsible governance, and addressing societal impacts such as algorithmic bias, job displacement, and environmental concerns. Integrating interpretability and ethics is essential for building transparent, accountable, and demonstrably ethically sound AI systems that proactively support robust CSR objectives and ensure profound alignment with human values and fundamental rights. This crucial integration helps create equitable opportunities for all, paving the way for a genuinely responsible and sustainable technological future that benefits society broadly and promotes inclusive growth.
dc.description.departmentDepto. de Marketing
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipFacultad de Estudios Estadísticos. Universidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationHoughton Torralba, M., Shu, Z., Carrasco, RA., Blasco López, M.F. (2026). Interpretability and the Measurement of Ethical Foundations in Artificial Intelligence. In: Alvarez, I., Arias-Oliva, M., Dediu, AH., Silva, N. (eds) Ethical and Social Impacts of Information and Communication Technology. ETHICOMP 2025. Lecture Notes in Computer Science, vol 15939. Springer, Cham. https://doi.org/10.1007/978-3-032-01429-0_3
dc.identifier.doi10.1007/978-3-032-01429-0_3
dc.identifier.essn1611-3349
dc.identifier.isbn978-3-032-01429-0
dc.identifier.issn0302-9743
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-032-01429-0_3
dc.identifier.relatedurlhttps://link.springer.com/chapter/10.1007/978-3-032-01429-0_3
dc.identifier.urihttps://hdl.handle.net/20.500.14352/131102
dc.language.isoeng
dc.page.final34
dc.page.initial27
dc.rights.accessRightsrestricted access
dc.subject.cdu004.8
dc.subject.cdu17
dc.subject.cdu004.8:17
dc.subject.keywordArtificial intelligence
dc.subject.keywordCorporate social responsibility
dc.subject.keywordEthics
dc.subject.keywordInterpretability
dc.subject.keywordMeasurement
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmÉtica
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco5906.01 Derechos Humanos
dc.titleInterpretability and the measurement of ethical foundations in artificial intelligence
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication9c81487a-3696-4be8-ae4b-cc9388284db6
relation.isAuthorOfPublication0e904bac-aeb9-4021-a28d-d21856ac0c5b
relation.isAuthorOfPublication658b3e73-df89-4013-b006-45ea9db05e25
relation.isAuthorOfPublication659a259d-31e0-4663-badd-2780456f158f
relation.isAuthorOfPublication.latestForDiscovery9c81487a-3696-4be8-ae4b-cc9388284db6
relation.isEditorOfPublication5cda89bb-8c5c-415b-a9fb-d024ad4d39d6
relation.isEditorOfPublication.latestForDiscovery5cda89bb-8c5c-415b-a9fb-d024ad4d39d6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Interpretability.pdf
Size:
246.3 KB
Format:
Adobe Portable Document Format