Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Logarithmic interpolation methods and measure of non-compactness

dc.contributor.authorCobos Díaz, Fernando
dc.contributor.authorFernández Besoy, Blanca
dc.date.accessioned2023-06-17T13:27:23Z
dc.date.available2023-06-17T13:27:23Z
dc.date.issued2019
dc.description.abstractWe derive interpolation formulae for the measure of non-compactness of operators interpolated by logarithmic methods with θ = 0, 1 between quasi-Banach spaces. Applications are given to operators between Lorentz-Zygmund spaces.en
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.sponsorshipMinisterio de Educación, Formación Profesional y Deportes (España)
dc.description.sponsorshipFondo Europeo de Desarrollo Regional
dc.description.statusinpress
dc.eprint.idhttps://eprints.ucm.es/id/eprint/56903
dc.identifier.citationBesoy, Blanca F., y Fernando Cobos. Logarithmic Interpolation Methods and Measure of Non-Compactness. 2020. docta.ucm.es: https://hdl.handle.net/20.500.14352/6504
dc.identifier.citation[1] W. Amrein, A. Boutet de Monvel and V. Georgescu, C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Springer, Basel, 1996. [2] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988. [3] C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, Dissertationes Math. 175 (1980), 1-72. [4] J. Bergh and J. Löfström, Interpolation Spaces. An introduction, Springer, Berlin, 1976. [5] B.F. Besoy, On compactness theorems for logarithmic interpolation methods, Proceedings of the Conference Function Spaces XII, Banach Center Publ. (to appear). [6] B.F. Besoy and F. Cobos, Duality for logarithmic interpolation spaces when 0 < q < 1 and applications, J. Math. Anal. Appl. 466 (2018), 373-399. [7] B.F. Besoy and F. Cobos, Interpolation of the measure of non-compactness of bilinear operators among quasi-Banach spaces, J. Approx. Theory 243 (2019), 25-44. [8] Y. Brudnyı and N. Krugljak, Interpolation Functors and Interpolation Spaces, Vol. 1, North-Holland, Amsterdam, 1991. [9] P.L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer-Verlag, Berlin, 1967. [10] A.P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. [11] F. Cobos, Interpolation theory and compactness, in Function Spaces, Inequalities and Interpolation. Edited by J. Lukes and L. Pick, Paseky, Prague 2009, pp. 31-75. [12] F. Cobos, L.M. Fernández-Cabrera and A. Martínez, Abstract K and J spaces and measure of non-compactness, Math. Nachr. 280 (2007), 1698-1708. [13] F. Cobos, L.M. Ferna´ndez-Cabrera and A. Mart´ınez, On a paper of Edmunds and Opic on limiting interpolation of compact operators between Lp spaces, Math. Nachr. 288 (2015), 167-175. [14] F. Cobos, L.M. Fernández-Cabrera and A. Martínez, Measure of non-compactness of operators interpolated by limiting real methods, in Operator Theory: Advances and Applications, 219, Springer, Basel 2012, pp. 37–54. [15] F. Cobos, L.M. Fernández-Cabrera and A. Martínez, Estimates for the spectrum on logarithmic interpolation spaces, J. Math. Anal. Appl. 437 (2016), 292-309. [16] F. Cobos, L.M. Fernández-Cabrera, T. Kühn and T. Ullrich, On an extreme class of real interpolation spaces, J. Funct. Anal. 256 (2009), 2321-2366. [17] F. Cobos, P. Fernández-Martínez and A. Martínez, Interpolation of the measure of non-compactnes by the real method, Studia Math. 135 (1999), 25-38. [18] F. Cobos, T. Kühn and T. Schonbek, One-sided compactness results for Aronszajn-Gagliardo func- tors, J. Funct. Anal. 106 (1992), 274-313. [19] F. Cobos and J. Peetre, Interpolation of compactness using Aronszajn-Gagliardo functors, Israel J. Math. 68 (1989), 220-240. [20] F. Cobos and A. Segurado, Description of logarithmic interpolation spaces by means of the J - functional and applications, J. Funct. Anal. 268 (2015), 2906-2945. [21] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994. [22] J.M. Cordeiro, Interpolación de Ciertas Clases de Operadores por M´etodos Multidimensionales, Ph. D. thesis, Publicaciones del Depto. de Matema´tica Aplicada, Universidad de Vigo, 1999. [23] M. Cwikel, Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65 (1992), 333-343. [24] R.Ya. Doktorskii, Reiteration relations of the real interpolation method, Soviet Math. Dokl. 44 (1992), 665-669. [25] D.E. Edmunds and W.D. Evans, Hardy Operators, Function Spaces and Embeddings, Springer, Berlin 2004. [26] D.E. Edmunds and Yu. Netrusov, Entropy numbers and interpolation, Math. Ann. 351 (2011), 963-977. [27] D.E. Edmunds and Yu. Netrusov, Entropy numbers of operators acting between vector-valued sequence spaces, Math. Nachr. 286 (2013), 614-630. [28] D.E. Edmunds and B. Opic, Limiting variants of Krasnoselskiı’s compact interpolation theorem, J. Funct. Anal. 266 (2014), 3265-3285. [29] W.D. Evans and B. Opic, Real interpolation with logarithmic functors and reiteration, Canad. J. Math. 52 (2000), 920-960. [30] W.D. Evans, B. Opic and L. Pick, Real interpolation with logarithmic functors, J. Inequal. Appl. 7 (2002), 187-269. [31] J. Gustavsson, A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42 (1978), 289-305. [32] H. König, Eigenvalue Distribution of Compact Operators, Birkhaüser, Basel, 1986. [33] G. K¨othe, Topological Vector Spaces I, Springer, Berlin, 1969. [34] M.A. Krasnoselskiˇı, On a theorem of M. Riesz, Dokl. Akad. Nauk SSSR. 131 (1960), 246-248. [35] J.L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation, Publ. Math. Inst. Hautes Etudes Sci. 19 (1964), 5-68. [36] M. Mastylo and E.B. Silva, Interpolation of the measure of non-compactness of bilinear operators, Trans. Amer. Math. Soc. 370 (2018), 8979-8997. [37] P. Nilsson, Reiteration theorems for real nterpolation and approximation spaces, Ann. Mat. Pura Appl. 132 (1982), 291-330. [38] B. Opic and L. Pick, On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl. 2 (1999), 391- 467. [39] L.E. Persson, Interpolation with a parameter function, Math. Scand. 59 (1986), 199-222. [40] M. Schechter, Principles of Functional Analysis, Amer. Math. Soc., Providence, 2001. [41] R. Szwedek, Measure of non-compactness of operators interpolated by the real method, Studia Math. 175 (2006), 157-174. [42] R. Szwedek, On interpolation of the measure of non-compactness by the complex method, Quart. J. Math. Oxford 66 (2015), 323-332. [43] R. Szwedek, Geometric interpolation of entropy numbers, Quart. J. Math. Oxford 69 (2018), 377-389. [44] M.F. Teixeira and D.E. Edmunds, Interpolation theory and measures of non-compactness, Math. Nachr. 104 (1981), 129-135. [45] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. [46] H. Triebel, Theory of Function Spaces II, Birkhaüser, Basel, 1992.
dc.identifier.issn0033-5606
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13528
dc.journal.titleQuarterly Journal of Mathematics
dc.language.isoeng
dc.relation.projectIDMTM2017-84508-P
dc.relation.projectIDFPU16/02420
dc.rights.accessRightsopen access
dc.subject.cdu515.175.2
dc.subject.cdu517.982.22
dc.subject.keywordLogarithmic interpolation methods
dc.subject.keywordMeasure of non-compactness
dc.subject.keywordCompact operators
dc.subject.keywordLorentz-Zygmund spaces
dc.subject.keywordEspacios de Banach
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.subject.unesco12 Matemáticas
dc.titleLogarithmic interpolation methods and measure of non-compactnessen
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublicationad35279f-f928-4b72-a5bd-e422662ac4c1
relation.isAuthorOfPublication089b5391-8b00-49f9-9325-7607c9ad4064
relation.isAuthorOfPublication.latestForDiscoveryad35279f-f928-4b72-a5bd-e422662ac4c1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
02_Besoy.pdf
Size:
326.04 KB
Format:
Adobe Portable Document Format

Collections