Spectral weight function for the half-filled Hubbard-model: a singular-value decomposition approach

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
The singular value decomposition technique is used to reconstruct the electronic spectral weight function for a half-filled Hubbard model with on-site repulsion U = 4t from quantum Monte Carlo data. A two-band structure for the single-particle excitation spectrum is found to persist as the lattice size exceeds the spin-spin correlation length. The observed bands are flat in the vicinity of the (0, π), (π, 0) points in the Brillouin zone, in accordance with experimental data for high-temperature superconducting compounds.
© American Physical Society. We thank J. Jefferson, A. Bratkovsky, D. Edwards, D. Sivia, and P. Kornilovitch for stimulating discussions. This work was supported by SERC Grant NO. GR/JI8675 and our general development of SVD techniques by the U.S. Army Research ONce, Agreement No. DAAL03-92- G-0142.
Unesco subjects
1. K. Gofron et al., Phys. Rev. Lett. 73, 3302 (1994). 2. D. S. Dessau et al., D. M. King et al.Phys. Rev. Lett. 71, 2781 (1993); , ibid. 73, 3298 (1994). 3. P. Aebi et al., Phys. Rev. Lett. 72, 2757 (1994). 4. E. Dagotto, A. Nazarenko, and M. Boninsegni, Phys. Rev. Lett. 73, 728 (1994). 5. A. Moreo, S. Haas, A. Sandvik, and E. Dagotto (unpublished). 6. H.-B. Schüttler and D. J. Scalapino, Phys. Rev. B 34, 4744 (1986). 7. S. R. White, M. Vekić and S. R. WhitePhys. Rev. B 44, 4670 (1991); , ibid. 47, 1160 (1993). 8. N. Bulut, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 72, 705 (1994) 73, 748 (1994). 9. W. von der Linden, R. Preuss, and W. Hanke (unpublished). 10. S. R. White, Phys. Rev. B 46, 5678 (1992). 11. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994). 12. G. Fano, F. Ortolani, and A. Parola, Phys. Rev. B 46, 1048 (1992). 13. M. Bertero, C. De Mol, and E. R. Pike, M. Bertero and E. R. PikeInverse Problems 1, 301 (1985); , Handbook of Statistics, N. K. Bose and C. R. Rao (Elsevier Science Publishers, New York,1993), Vol. 10. 14. M. Bertero, P. Branzi, E. R. Pike, and L. Rebolia, Proc. R. Soc. London A 415, 257 (1988) M. Bertero, C. De Mol, and E. R. Pike, Inverse Problems 4, 573 (1988). 15. M. Bertero, P. Boccacci, and E. R. Pike, Proc. R. Soc. London A 383, 15 (1982) 393, 51 (1984)M. Bertero, P. Branzi, and E. R. Pike, Proc. R. Soc. London A 398, 23 (1985). 16. M. Bertero and E. R. Pike, Inverse Problems 7, 1 (1991) 7, 21 (1991). 17. J. Beenen and D. M. Edwards, J. Low Temp. Phys. (to be published).