Visible and infrared luminescence study of Er doped β-Ga_2O_3 and Er_3 Ga_5O_12

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
IOP Publishing Ltd
Google Scholar
Research Projects
Organizational Units
Journal Issue
The luminescence properties of Er doped β-Ga_2O_3 and of the erbium gallium garnet Er_3 Ga_5O_12(ErGG) have been investigated both in the visible and in the infrared (IR) ranges by means of photoluminescence (PL). Doping of the β-Ga_2O_3 was obtained in two different ways: erbium ion implantation into β-Ga_2O_3 and high temperature annealing of a mixture of Er_2O_3 and Ga_2_O3 powders. X-ray diffraction shows that the latter samples present both β-Ga_2O_3 and ErGG phases. The PL studies demonstrate that the beta-Ga2O3 in these samples is doped with erbium. The differences in the luminescence emission and excitation peaks of the Er^3+ ions in these two hosts are studied through selective PL measurements. Strong near IR emission and weak green emission from Er^3+ in the β-Ga_2O_3 matrix is obtained. The opposite is obtained for Er^3+ in ErGG when excited under the same conditions. Room temperature luminescence is observed from erbium in the two hosts.
© 2008 IOP Publishing Ltd. This Work Has Been Supported By MEC (Project MAT 2006-01259). KL Acknowledges Support By FCT, Portugal.
Unesco subjects
[1] Yamaga M, Víllora E G, Shimamura K, Ichinose N and Honda M 2003 Phys. Rev. B 68 155207 [2] Miyata T, Nakatani T and Minami T 2000 J. Lumin. 87–89 1183 [3] Zhou X T, Heigl F, Ko J Y P, MurphyMW, Zhou J G, Regier T, Blyth R I R and Sham T K 2007 Phys. Rev. B 75 125303 [4] Binet L and Gourier D 1998 J. Phys. Chem. Solids 59 1241 [5] Nogales E, García J A, Méndez B and Piqueras J 2007 J. Appl. Phys. 101 033517 [6] Nogales E, M´endez B and Piqueras J 2005 Appl. Phys. Lett. 86 113112 [7] Nogales E, García J A, M´endez B and Piqueras J 2007 Appl. Phys. Lett. 91 133108 [8] Nogales E, M´endez B and Piqueras J 2008 Nanotechnology 19 035713 [9] Gollakota P, Dhawan A, Wellenius P, Lunardi L M, Muth J F, Saripalli Y N, Peng H Y and Everitt H O 2006 Appl. Phys. Lett. 88 221906 [10] Pang M L, Shen W Y and Lin J 2005 J. Appl. Phys. 97 033511 [11] Favennec P N, Haridon H L, Salvi M, Muotonnet D and Le Guillo Y 1989 Electron. Lett. 25 718 [12] Heikenfeld J, Lee D S, Garter M, Birkhahn R and Steckl A J 2000 Appl. Phys. Lett. 76 1365 [13] Lozykowski H J, Jadwisienczak W M and Brown I 1999 Appl. Phys. Lett. 74 1129 [14] Wang K, Martin R W, Nogales E, Edwards P R, O’Donnell K P, Lorenz K, Alves E and Watson I M 2006 Appl. Phys. Lett. 89 131912 [15] Nogales E, Méndez B, Piqueras J, Plugaru R, Coraci A and García J A 2002 J. Phys. D: Appl. Phys. 35 295 [16] Polman A 1997 J. Appl. Phys. 82 1 [17] Przybylinska H, Jantsch W, Suprun-Belevitch Y, Stepikhova M, Palmetshofer L, Hendorfer G, Kozanecki A, Wilson R J and Sealy B J 1996 Phys. Rev. B 54 2532 [18] Orlich E and H¨ufner S 1969 J. Appl. Phys. 40 1503 [19] Guillot M, Schmiedel T and Xu Y 1998 J. Appl. Phys. 83 6762 [20] Gruber J B et al 2007 J. Appl. Phys. 101 023108 [21] Klik M A J, Gregorkiewicz T, Bradley I V and Wells J-P R 2002 Phys. Rev. Lett. 89 227401 [22] Henderson B and Imbusch G F 1989 Optical Spectroscopy of Inorganic Solids (Oxford: Clarendon) [23] Dierolf V, Sandman C, Zavada J, Chow P and Hertog B 2004 J. Appl. Phys. 95 5464 [24] Muth J F, Gollakota P, Dhawan A, Porter H L, Saripalli Y N and Lunardi L M 2005 MRS Symp. Proc. 866 V6.2.1 [25] Wang J, Zhou M J, Hark S K, Li Q, Tang D, Chu M W and Chen C H 2006 Appl. Phys. Lett. 89 221917