Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications
dc.contributor.author | Pérez, E. | |
dc.contributor.author | Castán, H. | |
dc.contributor.author | García, H. | |
dc.contributor.author | Dueñas, S. | |
dc.contributor.author | Bailón, L. | |
dc.contributor.author | Montero Álvarez, Daniel | |
dc.contributor.author | García-Hernansanz, R. | |
dc.contributor.author | García Hemme, Eric | |
dc.contributor.author | Olea Ariza, Javier | |
dc.contributor.author | González Díaz, Germán | |
dc.date.accessioned | 2023-06-19T14:56:41Z | |
dc.date.available | 2023-06-19T14:56:41Z | |
dc.date.issued | 2015-01 | |
dc.description | © 2015 AIP Publishing. The study has been supported by the Spanish TEC2011 under Grant No. 27292-C02-01, TEC2013-41730-R funded by the Ministerio de Economia y Competitividad, and the P2013/MAE-2780 funded by the Comunidad de Madrid. Research of E. Perez was supported by a University of Valladolid FPI Grant. J. Olea acknowledge financial support from the MICINN within the program Juan de la Cierva (JCI-2011-10402), under which this research was undertaken. Research by E. Garcia-Hemme was also supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). | |
dc.description.abstract | In the attempt to form an intermediate band in the bandgap of silicon substrates to give it the capability to absorb infrared radiation, we studied the deep levels in supersaturated silicon with titanium. The technique used to characterize the energy levels was the thermal admittance spectroscopy. Our experimental results showed that in samples with titanium concentration just under Mott limit there was a relationship among the activation energy value and the capture cross section value. This relationship obeys to the well known Meyer-Neldel rule, which typically appears in processes involving multiple excitations, like carrier capture/emission in deep levels, and it is generally observed in disordered systems. The obtained characteristic Meyer-Neldel parameters were Tmn = 176 K and kTmn = 15 meV. The energy value could be associated to the typical energy of the phonons in the substrate. The almost perfect adjust of all experimental data to the same straight line provides further evidence of the validity of the Meyer Neldel rule, and may contribute to obtain a deeper insight on the ultimate meaning of this phenomenon. (C) 2015 AIP Publishing LLC. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO) | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | University of Valladolid | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Moncloa Campus of International Excellence (UCM-UPM) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/33528 | |
dc.identifier.doi | 10.1063/1.4905784 | |
dc.identifier.issn | 0003-6951 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.4905784 | |
dc.identifier.relatedurl | http://scitation.aip.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/34898 | |
dc.issue.number | 2 | |
dc.journal.title | Applied physics letters | |
dc.language.iso | eng | |
dc.publisher | American Institute of Physics | |
dc.relation.projectID | TEC2011-27292-C02-01 | |
dc.relation.projectID | TEC2013-41730-R | |
dc.relation.projectID | MADRID-PV (P2013/MAE-2780) | |
dc.relation.projectID | JCI- 2011-10402 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 537 | |
dc.subject.keyword | Meyer-Neldel rule | |
dc.subject.keyword | Nonradiative recombination | |
dc.subject.keyword | Solar-Cells | |
dc.subject.keyword | Relaxation | |
dc.subject.keyword | Layers | |
dc.subject.ucm | Electricidad | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.unesco | 2202.03 Electricidad | |
dc.title | Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications | |
dc.type | journal article | |
dc.volume.number | 106 | |
dcterms.references | 1.J. Olea, D. Pastor, M. T. Luque, I. Mártil, and G. González, Next Generation of Photovoltaics. New Concepts, Springer Series in Optical Sciences (Springer, 2012), pp. 321–346. 2.H. Castán, E. Pérez, H. García, S. Dueñas, L. Bailón, J. Olea, D. Pastor, E., García-Hemme, M. Irigoyen, and G. González-Díaz, J. Appl. Phys. 113, 024104 (2013). 3 G. González-Díaz, J. Olea, I. Mártil, D. Pastor, A. Martí, E. Antolín, and A. Luque, Sol. Energy Mater. Sol. Cells 93, 1668 (2009). 4 A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997). 5 A. Luque and A. Martí, Handbook of Photovoltaic Science and Engineering, 2nd ed. (John Wiley & Sons, 2011), pp. 130–168. 6 J. Mailoa, A. Akey, C. Simmons, D. Hutchinson, J. Mathews, J. T., Sullivan, D. Recht, M. Winkler, J. Williams, J. Warrender, P. Persans, M. Aziz, and T. Buonassisi, Nat. Commun. 5, 3011 (2014). 7 A. Luque, A. Martí, E. Antolín, and C. Tablero, Phys. B 382, 320 (2006). 8 J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andrés, I. Mártil, and G. González-Díaz, J. Appl. Phys. 107, 103524 (2010). 9 J. Olea, D. Pastor, M. Toledano-Luque, I. Mártil, and G. González-Díaz, J. Appl. Phys. 110, 064501 (2011). 10 J. Barbolla, S. Due~nas, and L. Bail_on, Solid-State Electron. 35, 285 (1992). 11 D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed. (John Wiley & Sons, 1998). 12 W. Meyer and H. Neldel, Z. Tech. Phys. 18, 588 (1937). 13 Y. Chen and S. Huang, Phys. Rev. B 44, 13775 (1991). 14 R. Widenhorn, L. Mundermann, A. Rest, and E. Bodegom, J. Appl. Phys. 89, 8179 (2001). 15 R. Widenhorn, M. Fitzgibbons, and E. Bodegom, J. Appl. Phys. 96, 7379 (2004). 16 T. Coutts and N. Pearsall, Appl. Phys. Lett. 44, 134 (1984). 17 V. Antonov, J. Palmer, P. Waggoner, A. Bhatti, and J. Weaver, Phys. Rev. B 70, 045406 (2004). 18 P. Waggoner, J. Palmer, V. Antonov, and J. Weaver, Surf. Sci. 596, 12 (2005). 19 A. Yelon, B. Movaghar, and R. Crandall, Rep. Prog. Phys. 69, 1145 (2006). 20 A. Yelon, B. Movaghar, and H. Branz, Phys. Rev. B 46, 12244 (1992). 21 D. Lang and C. Henry, Phys. Rev. Lett. 35, 1525 (1975). 22 A. Yelon, Monatsh. Chem. 144, 91 (2013). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1c0ebe96-b6cf-43ed-b521-544593e33095 | |
relation.isAuthorOfPublication | 765f38c4-71cb-441b-b2a8-d88c5cdcf086 | |
relation.isAuthorOfPublication | 12efa09d-69f7-43d4-8a66-75d05b8fe161 | |
relation.isAuthorOfPublication | a5ab602d-705f-4080-b4eb-53772168a203 | |
relation.isAuthorOfPublication.latestForDiscovery | 1c0ebe96-b6cf-43ed-b521-544593e33095 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- González-Díez, G. 136libre.pdf
- Size:
- 754.79 KB
- Format:
- Adobe Portable Document Format