Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Testing the chemical tagging technique with open clusters

dc.contributor.authorGonzález Hernández, J. I.
dc.contributor.authorMontes Gutiérrez, David
dc.contributor.authorTabernero Guzmán, Hugo Martín
dc.date.accessioned2023-06-18T06:45:24Z
dc.date.available2023-06-18T06:45:24Z
dc.date.issued2015-05
dc.description© ESO 2015. This work was partially supported by the Gaia Research for European Astronomy Training (GREAT-ITN) Marie Curie network, funded through the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement n. 264895. U.H. and A.J.K. acknowledge support from the Swedish National Space Board (Rymdstyrelsen). I.S.R. gratefully acknowledges the support provided by the Gemini-CONICYT project 32110029. All the software used in the data analysis were provided by the Open Source community.
dc.description.abstractContext. Stars are born together from giant molecular clouds and, if we assume that the priors were chemically homogeneous and well-mixed, we expect them to share the same chemical composition. Most of the stellar aggregates are disrupted while orbiting the Galaxy and most of the dynamic information is lost, thus the only possibility of reconstructing the stellar formation history is to analyze the chemical abundances that we observe today. Aims. The chemical tagging technique aims to recover disrupted stellar clusters based merely on their chemical composition. We evaluate the viability of this technique to recover co-natal stars that are no longer gravitationally bound. Methods. Open clusters are co-natal aggregates that have managed to survive together. We compiled stellar spectra from 31 old and intermediate-age open clusters, homogeneously derived atmospheric parameters, and 17 abundance species, and applied machine learning algorithms to group the stars based on their chemical composition. This approach allows us to evaluate the viability and efficiency of the chemical tagging technique. Results. We found that stars at different evolutionary stages have distinct chemical patterns that may be due to NLTE effects, atomic diffusion, mixing, and biases. When separating stars into dwarfs and giants, we observed that a few open clusters show distinct chemical signatures while the majority show a high degree of overlap. This limits the recovery of co-natal aggregates by applying the chemical tagging technique. Nevertheless, there is room for improvement if more elements are included and models are improved.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipGaia Research for European Astronomy Training (GREAT-ITN) Marie Curie network through the European Union Seventh Framework Programme [FP7]
dc.description.sponsorshipSwedish National Space Board (Rymdstyrelsen)
dc.description.sponsorshipComisión Nacional de Investigación Científica y Tecnológica (CONICYT), Chile
dc.description.sponsorshipMinisterio de Educación (Chile)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30821
dc.identifier.doi10.1051/0004-6361/201425232
dc.identifier.issn0004-6361
dc.identifier.officialurlhttp://dx.doi.org/10.1051/0004-6361/201425232
dc.identifier.relatedurlhttp://www.aanda.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24045
dc.journal.titleAstronomy and astrophysics
dc.language.isoeng
dc.page.finalA47/15
dc.page.initialA47/1
dc.publisherEDP Sciencies
dc.relation.projectIDGREAT (264895)
dc.relation.projectIDGemini-CONICYT 32110029
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordOld open clusters
dc.subject.keywordLate-type stars
dc.subject.keywordLte line formation
dc.subject.keywordModel atmospheres
dc.subject.keywordAtomic diffusion
dc.subject.keywordGalactic disk
dc.subject.keywordMolecular clouds
dc.subject.keywordAbundances
dc.subject.keywordParameters
dc.subject.keywordMetallicity
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleTesting the chemical tagging technique with open clusters
dc.typejournal article
dc.volume.number577
dcterms.referencesAnderson, E., & Francis, C. 2012, Astron. Lett., 38, 331 Anguiano, B., Freeman, K., Bland-Hawthorn, J., et al. 2014, in IAU Symp. 298, eds. S. Feltzing, G. Zhao, N. A. Walton, & P. Whitelock, 322 Arthur, D., & Vassilvitskii, S. 2007, in Proc. eighteenth annual ACM-SIAM symp. on Discrete algorithms, SIAM, 1027 Aurière, M. 2003, in EAS Pub. Ser. 9, eds. J. Arnaud, & N. Meunier, 105 Barden, S. C., Jones, D. J., Barnes, S. I., et al. 2010, in SPIE Conf. Ser., 7735 Bergemann, M., Lind, K., Collet, R., Magic, Z., & Asplund, M. 2012, MNRAS, 427, 27 Blanco Cuaresma, S., Soubiran, C., Heiter, U., & Jofré, P. 2014a, A&A, 569, A111 Blanco Cuaresma, S., Soubiran, C., Jofré, P., & Heiter, U. 2014b, A&A, 566, A98 Bland-Hawthorn, J., & Freeman, K. C. 2004, PASA, 21, 110 Bland-Hawthorn, J., Krumholz, M. R., & Freeman, K. 2010, ApJ, 713, 166 Bragaglia, A., & Tosi, M. 2006, AJ, 131, 1544 Busso, M., Gallino, R., Lambert, D. L., Travaglio, C., & Smith, V. V. 2001, ApJ, 557, 802 Carraro, G., Geisler, D., Villanova, S., Frinchaboy, P. M., & Majewski, S. R. 2007, A&A, 476, 217 De Silva, G. M., Sneden, C., Paulson, D. B., et al. 2006, AJ, 131, 455 De Silva, G. M., Freeman, K. C., Asplund, M., et al. 2007, AJ, 133, 1161 De Silva, G. M., Freeman, K. C., & Bland-Hawthorn, J. 2009, PASA, 26, 11 De Silva, G. M., Freeman, K. C., Bland-Hawthorn, J., et al. 2015, MNRAS, 449, 2604 Dekker, H., D’Odorico, S., Kaufer, A., Delabre, B., & Kotzlowski, H. 2000, in SPIE Conf. Ser. 4008, eds. M. Iye, & A. F. Moorwood, 534 Demarque, P., Woo, J.-H., Kim, Y.-C., & Yi, S. K. 2004, ApJS, 155, 667 Dias, W. S., Alessi, B. S., Moitinho, A., & Lépine, J. R. D. 2002, A&A, 389, 871 Donati, J., Semel, M., Carter, B. D., Rees, D. E., & Collier Cameron, A. 1997, MNRAS, 291, 658 Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. 1996, KDD, 96, 226 Feng, Y., & Krumholz, M. R. 2014, Nature, 513, 523 Filzmoser, P. 2004, Proc. 7th Int. Conf. Computer Data Analysis and Modeling, eds. S. Aivazian et al., Vol. 1, 18 Finlay, J., Noriega Crespo, A., Friel, E. D., & Cudworth, K. M. 1995, in BAAS 27, Am. Astron. Soc. Meet. Abstr., 107.02 Freeman, K., & Bland-Hawthorn, J. 2002, ARA&A, 40, 487 Frey, B. J., & Dueck, D. 2007, Science, 315, 972 Friel, E. D. 1995, ARA&A, 33, 381 Gilmore, G., Randich, S., Asplund, M., et al. 2012, The Messenger, 147, 25 Gray, R. O., & Corbally, C. J. 1994, AJ, 107, 742 Grevesse, N., Asplund, M., & Sauval, A. J. 2007, Space Sci. Rev., 130, 105 Gruyters, P., Korn, A. J., Richard, O., et al. 2013, A&A, 555, A31 Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A&A, 486, 951 Heiter, U., & Eriksson, K. 2006, A&A, 452, 1039 Heiter, U., Soubiran, C., Netopil, M., & Paunzen, E. 2014, A&A, 561, A93 Hirschberg, J. B., & Rosenberg, A. 2007, Proc. EMNLP Jacobson, H. R., Pilachowski, C. A., & Friel, E. D. 2011, AJ, 142, 59 Jappsen, A.-K., Klessen, R. S., Larson, R. B., Li, Y., & Mac Low, M.-M. 2005, A&A, 435, 611 Kharchenko, N. V., Piskunov, A. E., Röser, S., Schilbach, E., & Scholz, R.-D. 2005, A&A, 438, 1163 Korn, A. J., Grundahl, F., Richard, O., et al. 2007, ApJ, 671, 402 Kratz, K.-L., Farouqi, K., Pfeiffer, B., et al. 2007, ApJ, 662, 39 Lada, C. J., & Lada, E. A. 2003, ARA&A, 41, 57 Larson, R. B. 1995, MNRAS, 272, 213 Lind, K., Korn, A. J., Barklem, P. S., & Grundahl, F. 2008, A&A, 490, 777 Lind, K., Bergemann, M., & Asplund, M. 2012, MNRAS, 427, 50 Lloyd, S. 1982, Information Theory, IEEE Transactions, 28, 129 Magrini, L., Randich, S., Romano, D., et al. 2014, A&A, 563, A44 Mahalanobis, P. C. 1936, Proc. National Institute of Sciences, Calcutta, 2, 49 Mashonkina, L. I., Shimanskii, V. V., & Sakhibullin, N. A. 2000, Astron. Rep., 44, 790 Mathieu, R. D. 2000, in Stellar Clusters and Associations: Convection, Rotation, and Dynamos, eds. R. Pallavicini, G. Micela, & S. Sciortino, ASP Conf. Ser., 198, 517 Mayor, M., Pepe, F., Queloz, D., et al. 2003, The Messenger, 114, 20 Meléndez, J., Bergemann, M., Cohen, J. G., et al. 2012, A&A, 543, A29 Mermilliod, J.-C., Mayor, M., & Udry, S. 2009, A&A, 498, 949 Meyer, M. R., Adams, F. C., Hillenbrand, L. A., Carpenter, J. M., & Larson, R. B. 2000, Protostars and Planets IV, 121 Mitschang, A. W., De Silva, G., Sharma, S., & Zucker, D. B. 2013, MNRAS, 428, 2321 Mitschang, A. W., De Silva, G., Zucker, D. B., et al. 2014, MNRAS, 438, 2753 Molenda-Zakowicz, J., Brogaard, K., Niemczura, E., et al. 2014, MNRAS, 445, 2446 Montalto, M., Villanova, S., Koppenhoefer, J., et al. 2011, A&A, 535, A39 Netopil, M., & Paunzen, E. 2013, A&A, 557, A10 Nordlander, T., Korn, A. J., Richard, O., & Lind, K. 2012, ApJ, 753, 48 Önehag, A., Gustafsson, B., & Korn, A. 2014, A&A, 562, A102 Pace, G., Danziger, J., Carraro, G., et al. 2010, A&A, 515, A28 Paunzen, E., & Netopil, M. 2006, MNRAS, 371, 1641 Paunzen, E., Heiter, U., Netopil, M., & Soubiran, C. 2010, A&A, 517, A32 Pereira, T. M. D., Asplund, M., Collet, R., et al. 2013, A&A, 554, A118 Pöhnl, H., & Paunzen, E. 2010, A&A, 514, A81 Randich, S., Sestito, P., Primas, F., Pallavicini, R., & Pasquini, L. 2006, A&A, 450, 557 Rousseeuw, P. J. 1984, J. Am. Statistical Association, 79, 871 Rousseeuw, P. J. 1987, J. Comput. Appl. Math., 20, 53 Rousseeuw, P. J., & Driessen, K. V. 1999, Technometrics, 41, 212 Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23 Tilley, D. A., & Pudritz, R. E. 2004, MNRAS, 353, 769 Ting, Y.-S., Freeman, K. C., Kobayashi, C., De Silva, G. M., & Bland-Hawthorn, J. 2012, MNRAS, 421, 1231 van den Bergh, S., & McClure, R. D. 1980, A&A, 88, 360
dspace.entity.typePublication
relation.isAuthorOfPublication2dfe4286-12c7-4d3a-bfda-d298a90cc8fe
relation.isAuthorOfPublication.latestForDiscovery2dfe4286-12c7-4d3a-bfda-d298a90cc8fe

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
davidmontes77libre.pdf
Size:
3.51 MB
Format:
Adobe Portable Document Format

Collections