Inverse amplitude method and Adler zeros

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Amer Physical Soc
Google Scholar
Research Projects
Organizational Units
Journal Issue
The inverse amplitude method is a powerful unitarization technique to enlarge the energy applicability region of effective Lagrangians. It has been widely used to describe resonances in hadronic physics, combined with chiral perturbation theory, as well as in the strongly interacting symmetry breaking sector. In this work we show how it can be slightly modified to also account for the subthreshold region, incorporating correctly the Adler zeros required by chiral symmetry and eliminating spurious poles. These improvements produce negligible effects on the physical region.
©2 008 The American Physical Society. Research was partially funded by Banco Santander/Complutense Contract No. PR27/05-13955- SCH and Spanish Contract No. FPA2007-29115-E, No. FPA2005-02327, No. FPA2004-02602, and No. UCM-CAM 910309. J. R. Peláez’s research is partly funded by Spanish Contract No. BFM2003-00856, and is part of the EU integrated infrastructure initiative HadronPhysics project, under Contract No. RII3-CT-2004-506078.
Unesco subjects
[1] S. Weinberg, Physica A (Amsterdam) 96, 327 (1979); J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984); Nucl. Phys. B250, 465 (1985). [2] T. Appelquist and C.W. Bernard, Phys. Rev. D 22, 200 (1980); A. Longhitano, Phys. Rev. D 22, 1166 (1980); Nucl. Phys. B188, 118 (1981); A. Dobado, M. J. Herrero, and J. Terron , Z. Phys. C 50, 205 (1991). [3] J. M. Cornwall, D. N. Levin, and G. Tiktopoulos, Phys. Rev. D 10, 1145 (1974); B.W. Lee, C. Quigg, and H. Thacker, Phys. Rev. D 16, 1519 (1977); M. S. Chanowitz and M. K. Gaillard, Nucl. Phys. B261, 379 (1985). [4] H. J. He, Y. P. Kuang, and X.Y. Li, Phys. Lett. B 329, 278(1994); A. Dobado and J. R. Peláez, Phys. Lett. B 329, 469 (1994); Nucl. Phys. B425, 110 (1994). [5] T. N. Truong, Phys. Rev. Lett. 61, 2526 (1988); A. Dobado, M. J. Herrero, and T. N. Truong, Phys. Lett. B 235, 134 (1990). [6] A. Dobado and J. R. Pelaez, Phys. Rev. D 47, 4883 (1993). [7] A. Dobado and J. R. Pelaez, Phys. Rev. D 56, 3057 (1997). [8] F. Guerrero and J. A. Oller, Nucl. Phys. B537, 459 (1999); B602, 641(E) (2001); A. Gómez Nicola and J. R. Peláez, Phys. Rev. D 65, 054009 (2002); J. R. Pelaez, Mod. Phys. Lett. A 19, 2879 (2004). [9] J. Nieves, M. Pavón Valderrama, and E. Ruiz Arriola, Phys. Rev. D 65, 036002 (2002). [10] A. Dobado, A. Gómez Nicola, F. J. Llanes-Estrada, and J. R. Pelaez, Phys. Rev. C 66, 055201 (2002). [11] D. Fernández-Fraile, A. Gómez Nicola, and E. T. Herruzo, Phys. Rev. D 76, 085020 (2007). [12] A. Gómez Nicola and J. R. Pelaez, Phys. Rev. D 62, 017502 (2000); J. R. Peláez and A. Gómez Nicola, Nucl. Phys. A675, 96C (2000); A. Gómez Nicola, J. Nieves, J. R. Peláez, and E. R. Arriola, Phys. Rev. D 69, 076007 (2004); Phys. Lett. B 486, 77 (2000). [13] A. Dobado, M. J. Herrero, and T. N. Truong, Phys. Lett. B 235, 129 (1990); J. R. Peláez, Phys. Rev. D 55, 4193 (1997); A. Dobado, M. J. Herrero, J. R. Peláez, and E. Ruiz Morales, Phys. Rev. D 62, 055011 (2000). [14] M. Boglione and M. R. Pennington, Z. Phys. C 75, 113 (1997). [15] S. L. Adler, Phys. Rev. 139, B1638 (1965). [16] C. Hanhart, J. R. Peláez, and G. Ríos (unpublished). Some preliminary results can already be found in J. R. Peláez, C. Hanhart, and G. Rios, arXiv:0712.1734, to appear in the Proceedings of the XII International Conference on Hadron Spectroscopy HADRON07, Frascati, 2007. [17] J. A. Oller, E. Oset, and J. R. Peláez, Phys. Rev. Lett. 80, 3452 (1998); Phys. Rev. D 59, 074001 (1999); 60, 099906(E) (1999); 75, 099903(E) (2007) [18] D.V. Bugg, Phys. Lett. B 572, 1 (2003); 595, 556(E) (2004). [19] F. J. Yndurain, R. García-Martín, and J. R. Peláez, Phys. Rev. D 76, 074034 (2007). [20] R. Kaminski, J. R. Peláez, and F. J. Yndurain, arXiv:0710.1150 [Phys. Rev. D (to be published)].