Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

On the ampleness of the normal bundle of line congruences

dc.contributor.authorArrondo Esteban, Enrique
dc.contributor.authorBertolini, Marina
dc.contributor.authorTurrini, Cristina
dc.date.accessioned2023-06-20T00:08:47Z
dc.date.available2023-06-20T00:08:47Z
dc.date.issued2011
dc.description.abstractIn this paper we study the normal bundle of the embedding of subvarieties of dimension n - 1 in the Grassmann variety of lines in P(n). Making use of some results on the geometry of the focal loci of congruences ([4] and [5]), we give some criteria to decide whether the normal bundle of a congruence is ample or not. Finally we apply these criteria to the line congruences of small degree in P(3).
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14736
dc.identifier.doihttp://dx.doi.org10.1515/FORM.2011.004
dc.identifier.issn0933-7741
dc.identifier.officialurlhttp://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=59745397&site=ehost-live
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42078
dc.issue.number2
dc.journal.titleForum Mathematicum
dc.language.isoeng
dc.page.final244
dc.page.initial223
dc.publisherWALTER DE GRUYTER
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordNormal bundle
dc.subject.keywordampleness
dc.subject.keywordline congruence
dc.subject.keywordGrassmannian.
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleOn the ampleness of the normal bundle of line congruences
dc.typejournal article
dc.volume.number23
dcterms.references[1] E. Arrondo, Line congruences of low order, Milan Journal of Mathematics (formerly Rendiconti del Seminario Matematico e Fisico di Milano) 70 (2002), 223–243. [2] E. Arrondo, M. Bertolini and C. Turrini, Classification of smooth congruences with a fundamental curve, in: Projective Geometry with Applications, pp. 43–56, Lecture Notes in Pure and Applied Mathematic 166, Marcel Dekker, 1994. [3] E. Arrondo, M. Bertolini and C. Turrini, Congruences of small degree in G.1; 4/, Comm. Algebra 26 (1998), 3249–3266. [4] E. Arrondo, M. Bertolini and C. Turrini, A focus on focal surface, Asian J. of Math. 5 (2001), 535–560. [5] E. Arrondo, M. Bertolini and C. Turrini, Focal loci in G.1;N/, Asian J. of Math. 9 (2005), 449–472. [6] E. Arrondo and J. Caravantes, On the Picard group of low-codimension subvarieties, Indiana U. Math. J. 58 (2009), 1023–1050. [7] E. Arrondo and M. L. Fania, Evidence to subcanonicity of codimension two submanifolds of G.1; 4/, Internat. J. Math. 17 (2006), 157–168. [8] E. Arrondo and I. Sols, On congruences of lines in the projective space, Mém. Soc. Math. France, 50, Société Mathématique de France, 1992, Supplément au Bulletin de la Société Mathématique de France, tome 120, fascicule 3. [9] E. Ballico, Normal bundle to curves in quadrics, Bull. Soc. Math. France 109 (1981), 227–235. [10] N. Goldstein, A special surface in the 4-quadric, Duke Math. J. 50 (1983), 745–761. [11] N. Goldstein, Examples of non-ample normal bundles, Comp. Math 51 (1984), 189–192. [12] N. Goldstein, Scroll surfaces in Gr.1; 3/, Rend. Sem. Mat. Univers. Politecn. Torino, Special issue (1987), 69–75. [13] R. Hartshorne, Algebraic Geometry,[1] E. Arrondo, Line congruences of low order, Milan Journal of Mathematics (formerly Rendiconti del Seminario Matematico e Fisico di Milano) 70 (2002), 223–243. [2] E. Arrondo, M. Bertolini and C. Turrini, Classification of smooth congruences with a fundamental curve, in: Projective Geometry with Applications, pp. 43–56, Lecture Notes in Pure and Applied Mathematic 166, Marcel Dekker, 1994. [3] E. Arrondo, M. Bertolini and C. Turrini, Congruences of small degree in G.1; 4/, Comm. Algebra 26 (1998), 3249–3266. [4] E. Arrondo, M. Bertolini and C. Turrini, A focus on focal surface, Asian J. of Math. 5 (2001), 535–560. [5] E. Arrondo, M. Bertolini and C. Turrini, Focal loci in G.1;N/, Asian J. of Math. 9 (2005), 449–472. [6] E. Arrondo and J. Caravantes, On the Picard group of low-codimension subvarieties, Indiana U. Math. J. 58 (2009), 1023–1050. [7] E. Arrondo and M. L. Fania, Evidence to subcanonicity of codimension two submanifolds of G.1; 4/, Internat. J. Math. 17 (2006), 157–168. [8] E. Arrondo and I. Sols, On congruences of lines in the projective space, Mém. Soc. Math. France, 50, Société Mathématique de France, 1992, Supplément au Bulletin de la Société Mathématique de France, tome 120, fascicule 3. [9] E. Ballico, Normal bundle to curves in quadrics, Bull. Soc. Math. France 109 (1981), 227–235. [10] N. Goldstein, A special surface in the 4-quadric, Duke Math. J. 50 (1983), 745–761. [11] N. Goldstein, Examples of non-ample normal bundles, Comp. Math 51 (1984), 189–192. [12] N. Goldstein, Scroll surfaces in Gr.1; 3/, Rend. Sem. Mat. Univers. Politecn. Torino, Special issue (1987), 69–75. [13] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer- Verlag, New York, Heidelberg, Berlin, 1977. [14] A. Papantonopoulou, Surfaces in the Grassmann variety G.1; 3/, Proc. Amer. Math. Soc. 77 (1979), 15–18. [15] M. Schneider and J. Zintl, The theorem of Barth-Lefschetz as a consequence of Le Potier’s vanishing theorem, Manuscripta Math. 80 (1993), 259–263.
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01.pdf
Size:
260.77 KB
Format:
Adobe Portable Document Format

Collections