Aplicación de la inteligencia artificial en la predicción de fracasos de restauraciones de resina compuesta. (Estudio piloto)

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
1. Glez‐Pena, D., et al., geneCBR: a translational tool for multiple‐microarray analysis and integrative information retrieval for aiding diagnosis in cancer research. BMC Bioinformatics, 2009. 10: p. 187. 2. Corchado, J.M., et al., Model of experts for decision support in the diagnosis of leukemia patients. Artif Intell Med, 2009. 46(3): p. 179‐200. 3. Joyanes, L., et al., Knowledge Management. Salamanca: University of Paisley, 2001. 4. Shortliffe, E.H. and J.J. Cimino, Biomedical informatics: computer applications in health care and biomedicine. New York: Springer, 2006. 5. Tapia, J., Arquitectura Multiagente para Entornos de Inteligencia Ambiental. Universidad de Ciencias de Salamanca: Salamanca, 2009. 6. Watson, I. and F. Marir, Case‐Based Reasoning: A Review. Cambridge University Press. The Knowledge Engineering Review, 1994. 9(3). 7. Kolodner, J., Maintainig organization in a dynamic long‐term memory. Cognitive Science, 1983. 7: p. 243‐280. 8. Kolodner, J., Reconstructive memory a computer model. Cognitive Science, 1983. 7(281‐328). 9. Corchado, J.M., et al., Intelligent Environment for Monitoring Alzheimer Pattients. Decision Support Systems, 2007. 10. Corchado, J.M. and R. Laza, Constructing Deliberative Agents with Case‐based Reasoning Technology. Internacional Journal of Intelligent Systems, 2003. 18(12): p. 1227‐1241. 11. Corchado, J.M., et al., Model of experts for decision support in the diagnosis of leukemia patients. Artificial Intelligence in Medicine, 2009(46): p. 21. 12. Corchado, M., et al., [The diagnostic spectrum in a series of 100 patients with hepatomegaly due to stasis]. Aten Primaria, 1989. 6(5): p. 363‐4. 13. Vera, V., A. Barbero, and E. García, A case‐based Reasoning System for Monitoring the Longevitiy of Dental Restorations. Computing and Information Systems Journal, 2002. 9(2): p. 14. 14. Van den Braden, M., et al., Integrating case‐based reasoning with an electronic patient record system. Artificial Intelligence in Medicine, 2011. 51: p. 117‐123. 15. Armengol, E., Classification of melanomas in situ using knowledge discovery with explained case‐based reasoning. Artif Intell Med. 2013 51(2): p. 93‐105. 16. Kolodner, J., Case‐based Reasoning, ed. M. Kaufmann. 1993, San Mateo. 17. Simpson, R.L., A computer model of case‐based reasoning in problem solving: an investigation in the domain of dispute mediation. Technical Report GTI‐ICS, 1985. 18. Editorial, G., Advances in Case‐based reasoning in the healt scinces. Artif Intell Med, 2011. 51: p. 75‐79. 19. Fraile, J.A., et al., Applying wearable solutions in dependent environments. IEEE Trans Inf Technol Biomed. 2012, 14(6): p. 1459‐67. 20. Bichindaritz, I. and S. Montani, Advances in case‐based reasoning in the health sciences. Artif Intell Med. 2012, 51(2): p. 75‐9. 21. Aamodt, A. and E. Plaza, Case‐Based Reasoning foundational issues. Methodological Variations and Systems Approaches. Artificial Intelligence Communications, 1994. 7(1): p. 39‐59. 22. Watson, I., Applying case‐based Reasoning: Techniques for Esterprise System, ed. M. Kaufmann. 1997. 23. Lopez, B., et al., eXiT*CBR: A framework for case‐based medical diagnosis development and experimentation. Artif Intell Med. 2011. 51(2): p. 81‐91. 24. Aha, D., D. Kibler, and M.D. Albert, Instance‐based Learning Algoritms. Machine Learning, 1991. 6(1). 25. Allemange, D., Review of EWCBR‐93. Artificial Intelligence Communications, 1993. 7(1). 26. Kristian, J., Hammond: Case‐based Planning. Academic Press. 1989. 27. Hammond, K.J., Case‐Based Planning. Academic Press, 1989. 28. Goodman, M., CBR in Battle Planning, in Proceedings of the DARPA Case‐Based Reasoning Workshop, Hammond, Editor. 1989, Morgan Kaufmann Publisher: San Francisco. 29. Simodius, E., Using case‐based reasoning for customer technical support. IEEE Trans Inf Technol Biomed, 1992. 7(5): p. 7‐13. 30. Veloso, M.M. and J. Carbonell, Derivational analogy in PRODIGY. Machine Learning, 1993. 10(3): p. 249‐278. 31. Burke, F.J. et al. “Restoration longevity and analysis of reasons for the replacement of restorations provided by vocational dental practioners and trainers in the United Kingdom”. Quintenesence Int. April 1999. 30 (4):234‐42. 32. Burke, F.J. el al. “Influence of patient factors on age of restorations at failure and reasons for their placement and replacement”. J Dent. July 2001; 29(5):317‐24. 33. Mjor, I.A. “Placement and replacement of restorations”. Oper. Dent. June 1981.(6):49‐54.34. Mjor, IA. “The reason of replacement and the age of failed restoration in general dental practice”. Acta Odontol. Scand. January 1997. 55 (1): 58‐63. 35. Mjor, IA., Toffeneti, F. “Placement and replacement of amalgam restorations in Italy”. Oper. Dent. . March 1992. 17(2): 70‐3 36. Qvist, V., Thylstrup, A., Mjor, I.A. “Restorative treatment pattern and longevity of amalgam restorations in Denmark”. Acta Odontol Scand. December 1986. 44(6): 343‐9. 37. Qvist, J., Qvist, V., Mjor, IA. “Placement and longevity of amalgam restorations in Denmark”. Acta Odontol. Scand. October 1990. 48(5): 297‐ 303. 38. Mjor, I.A. “Change in size of replaced amalgam restorations: A methodological study”. Oper Dent. September 1998. 23(5):272‐7 39. Craig, R. “Materiales dentales restauradores”. 7a edición, Mundi. 1988. p 81‐ 86. Cap 9; 40. Mount GJ. Minimal Intervention Dentistry: Rationale of Cavity Desing. Operative Dentistry. 2003; 28: 92‐99 41. Mount GJ. Defining, Classifying, and Placing Incipient Caries lesions in perspective. Dent Clin N Am. 2005; 49: 701‐723 42. Mount GJ, Tyas MJ, Duke ES, Lasfargues JJ, Kaleka R, Hume WR. A proposal for a new classification of lesions of exposed tooth surfaces. International Dental Journal 2006; 56: 82‐91 43. Stacey DG, Whittaker JM. Predicting academic performance and clinical competency for international dental students: seeking the most efficient and effective measures. J Dent Educ 2005; 69(2):270–80. 44. Vera, V., Corchado, E., Garcia, A.E. Applying soft computing techniques to optimise a dental milling process. Neurocomputing. Volume 109. 2013, 94‐104