Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Normal coverings of hyperelliptic real algebraic curves

dc.contributor.authorBujalance, E.
dc.contributor.authorCirre, F.J.
dc.contributor.authorGamboa Mutuberria, José Manuel
dc.date.accessioned2023-06-20T09:42:16Z
dc.date.available2023-06-20T09:42:16Z
dc.date.issued2007
dc.description.abstractWe consider normal (possibly) branched, finite-sheeted coverings $ \pi:X\rightarrow X'$ between hyperelliptic real algebraic curves. We are interested in the topology of such coverings and also in describing them in terms of algebraic equations. In this article we completely solve these two problems in case $ X$ has the maximum number of ovals within its genus. We first analyze the topological features and ramification data of such coverings. For each isomorphism class we then describe a representative, with defining polynomial equations for $ X$ and for $ X'$, formulae for generators of the covering transformation group, and a rational formula for the covering $ \pi:X\rightarrow X'$.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17274
dc.identifier.issn1088-4173
dc.identifier.officialurlhttp://www.ams.org/journals/ecgd/2007-11-09/S1088-4173-07-00163-4/S1088-4173-07-00163-4.pdf
dc.identifier.relatedurlhttp://www.ams.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50215
dc.journal.titleConformal geometry and dynamics
dc.language.isospa
dc.page.final127
dc.page.initial107
dc.publisherAmerican Mathematical Society
dc.rights.accessRightsopen access
dc.subject.cdu512
dc.subject.keywordKlein surfaces
dc.subject.keywordTopology of real algebraic varieties
dc.subject.keywordFuchsian groups and automorphic functions
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleNormal coverings of hyperelliptic real algebraic curves
dc.typejournal article
dc.volume.number11
dcterms.referencesR. D. M. Accola, On lifting the hyperelliptic involution, Proc. Amer. Math. Soc., 122 (2), (1994), 341–347. N. L. Alling, Real Elliptic Curves, Mathematical Studies 54, North-Holland, 1981. N. L. Alling and N. Greenleaf, Foundations of the Theory of Klein Surfaces, Lecture Notes in Math. 219, Springer, 1971 E. Bujalance, A classification of unbranched double coverings of hyperelliptic Riemann surfaces, Arch. Math. 47, (1) (1986), 93–96. E. Bujalance, F. J. Cirre, J. M. Gamboa, Double coverings of hyperelliptic real algebraic curves, submitted. E. Bujalance, J. J. Etayo, J. M. Gamboa, Hyperelliptic Klein surfaces, Quart. J. Math. Oxford, 36 (2) (1985), 141–157. E. Bujalance, J. J. Etayo, J. M. Gamboa, G. Gromadzki, Automorphisms Groups of Compact Bordered Klein Surfaces, Lecture Notes in Math. 1439, Springer-Verlag, Berlin, Heidelberg, 1990. F. J. Cirre, Birational classification of hyperelliptic real algebraic curves, The Geometry of Riemann Surfaces and Abelian Varieties, Contemporary Math. 397 (2006), 15–26. H. M. Farkas, Unramified double coverings of hyperelliptic surfaces, J. Analyse Math. 20 (1976), 150–155. H. M. Farkas, Unramified double coverings of hyperelliptic surfaces II, Proc. Amer. Math. Soc., 101 (3) (1987), 470–474 Y. Fuertes, G. González-Diez, Smooth double coverings of hyperelliptic curves. The Geometry of Riemann Surfaces and Abelian Varieties, Contemporary Math., 397 (2006), 73–77, Y. Fuertes, G. González-Diez, On unramified normal coverings of hyperelliptic curves. J. of Pure and Applied Algebra, 208 (3) (2007), 1063–1070. B. H. Gross, J. Harris, Real algebraic curves, Ann. Sci. ´Ecole Norm. Sup., 14 (1981), 157–182. A. Harnack, Uber die Vieltheiligkeit der ebenen algebraischen Kurven, Mat. Ann., 10 (1876), 189–198. R. Horiuchi, Normal coverings of hyperelliptic Riemann surfaces, J. Math. Kyoto Univ. 19 (3) (1979), 497–523. E. Kani, Unramified double covers of hyperelliptic Klein surfaces, C. R. Math. Rep. Acad. Sci. Canada 9 (3) (1987), 133–138. C. Maclachlan, Smooth coverings of hyperelliptic surfaces, Quart. J. Math. Oxford (2) 22 (1971), 117–123. H. H. Martens, A remark on Abel’s Theorem and the mapping of linear series, Comment. Math. Helvetici 52 (1977), 557–559.
dspace.entity.typePublication
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery8fcb811a-8d76-49a2-af34-85951d7f3fa5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gamboa101.pdf
Size:
299.21 KB
Format:
Adobe Portable Document Format

Collections