Strontium-releasing mesoporous bioactive glasses with anti-adhesive zwitterionic surface as advanced biomaterials for bone tissue regeneration

Loading...
Thumbnail Image
Full text at PDC
Publication date

2019

Authors
Pontremolli, Carlotta
Montalbano, Giorgia
Vitale-Brovarone, Chiara
Fiorilli, Sonia
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Citation
Abstract
Hypothesis The treatment of bone fractures still represents a challenging clinical issue when complications due to impaired bone remodelling (i.e. osteoporosis) or infections occur. These clinical needs still require a radical improvement of the existing therapeutic approach through the design of advanced biomaterials combining the ability to promote bone regeneration with anti-adhesive properties able to minimise unspecific biomolecules adsorption and bacterial adhesion. Strontium-containing mesoporous bioactive glasses (Sr-MBG), which are able to exert a pro-osteogenic effect by releasing Sr2+ ions, have been successfully functionalised to provide mixed-charge (-NH3 /-COO⊝) surface groups with anti-adhesive abilities. Experiments Sr-MBG have been post-synthesis modified by co-grafting hydrolysable short chain silanes containing amino (aminopropylsilanetriol) and carboxylate (carboxyethylsilanetriol) moieties to achieve a zwitterionic zero-charge surface. The final system was then characterised in terms of textural-structural properties, bioactivity, cytotoxicity, pro-osteogenic and anti-adhesive capabilities. Findings After zwitterionization the in vitro bioactivity was maintained, as well as the ability to release Sr2+ ions which are capable of inducing a mineralization process. Irrespective of their size, Sr-MBG particles did not exhibit any cytotoxicity in pre-osteoblastic MC3T3-E1 up to the concentration of 75 µg/mL. Finally, the zwitterionic Sr-MBGs showed a significant reduction of serum protein adhesion with respect to the pristine ones. These results open promising future expectations in the design of nanosystems which combine pro-osteogenic and anti-adhesive properties.
Research Projects
Organizational Units
Journal Issue
Description
RESEARCHER ID M-9921-2014 (Isabel Izquierdo Barba) ORCID 0000-0002-4139-4646 (Isabel Izquierdo Barba) RESEARCHER ID M-3378-2014 (María Vallet Regí) ORCID 0000-0002-6104-4889 (María Vallet Regí)
Keywords
Collections